Adaptive Motion Model for a Smart Phone Based Opportunistic Localization System

  • Maarten Weyn
  • Martin Klepal
  • Widyawan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5801)


Localization systems will evolve towards autonomous system which will use any useful information provided by mobile devices taking the hardware specification and environmental limitations into account. This paper demonstrates the concept of opportunistic localization using a smart phone with the following sensor technologies: Wi-Fi, GSM, GPS and two embedded accelerometers. A particle filter based estimator with an adaptive motion model is used to seamlessly fuse the different sensory readings. Real experiments in multi-floor, indoor-outdoor environments were conducted to analyze the performance of the proposed system. The achieved results using various sensor combinations are presented.


Mobile Device Access Point Motion Model Smart Phone Indoor Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beauregard, S.: Omnidirectional pedestrian navigation for first responders. In: 4th Workshop on Positioning, Navigation and Communication, 2007. WPNC 2007, pp. 33–36 (2007)Google Scholar
  2. 2.
    Porretta, M., Nepa, P., Manara, G., Giannetti, F.: Location, location, location. IEEE Vehicular Technology Magazine 3(2), 20–29 (2008)CrossRefGoogle Scholar
  3. 3.
    LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., et al.: Place lab: Device positioning using radio beacons in the wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Widyawan, Klepal, M., Beauregard, S.: A novel backtracking particle filter for pattern matching indoor localization. In: MELT 2008: Proceedings of the first ACM international workshop on Mobile entity localization and tracking in GPS-less en- vironments, pp. 79–84. ACM, New York (2008)CrossRefGoogle Scholar
  5. 5.
    El-Rabbany, A.: Introduction to GPS: The Global Positioning System. Artech House (2002)Google Scholar
  6. 6.
    Weyn, M., Schrooyen, F.: A wifi-assisted-gps positioning concept. In: Proceeding of ECUMICT, Gent, Beglium (March 2008)Google Scholar
  7. 7.
    Wibowo, S., Klepal, M., Pesch, D.: Time of flight ranging using off-the-shelf wifi tag. In: Proceedings of PoCA 2009 (2009)Google Scholar
  8. 8.
    Widyawan, Klepal, M., Pesch, D.: A bayesian approach for rf-based indoor localisation. In: IEEE ISWCS, Trondheim, Norway (October 2007)Google Scholar
  9. 9.
    Wigren, T.: Adaptive enhanced cell-id fingerprinting localization by clustering of precise position measurements. IEEE Transactions on Vehicular Technology 56, 3199–3209 (2007)CrossRefGoogle Scholar
  10. 10.
    Caffery, J., Stuber, G.: Overview of radiolocation in cdma cellular systems. IEEE Communications Magazine 36(4), 38–45 (1998)CrossRefGoogle Scholar
  11. 11.
    Varshavsky, A., de Lara, E., Hightower, J., LaMarca, A., Otsason, V.: Gsm indoor localization. Pervasive and Mobile Computing 3(6), 698–720 (2007)CrossRefGoogle Scholar
  12. 12.
    Bylemans, I., Weyn, M., Klepal, M.: Mobile phone-based displacement estima- tion for opportunistic localisation systems. In: Proceedings of UBICOMM9: International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologie, Malta (October 2009)Google Scholar
  13. 13.
    Couronne, S., Hadaschik, N., Fassbinder, M., von der Grun, T., Klepal, M., Widyawan, W.M., Denis, T.: Locon a platform for an inter-working of embedded localisation and communication systems. In: Proceeding of 6th Annnual IEEE SECON 2009, Rome, Italy (June 2009)Google Scholar
  14. 14.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). MIT Press, Cambridge (2006)zbMATHGoogle Scholar
  15. 15.
    Ristic, B., Arulampalam, S.: Beyond the Kalman filter: Particle filters for tracking applications. Artech House (2004)Google Scholar
  16. 16.
    Evennou, F., Marx, F.: Advanced integration of WIFI and inertial navigation systems for indoor mobile positioning. EURASIP Journal on Applied Signal Processing 2006, 1–11 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Maarten Weyn
    • 1
    • 2
  • Martin Klepal
    • 3
  • Widyawan
    • 3
  1. 1.Department of Applied Engineering: Electronics-ICTArtesis University College of AntwerpBelgium
  2. 2.Department of Mathematics and Computer ScienceUniversity of AntwerpBelgium
  3. 3.Cork Institute of TechnologyIreland

Personalised recommendations