Minimum Delay Data Gathering in Radio Networks

  • Jean-Claude Bermond
  • Nicolas Nisse
  • Patricio Reyes
  • Hervé Rivano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5793)

Abstract

The aim of this paper is to design efficient gathering algorithms (data collection) in a Base Station of a wireless multi hop grid network when interferences constraints are present. We suppose the time is slotted and that during one time slot (step) each node can transmit to one of its neighbours at most one data item. Each device is equipped with a half duplex interface; so a node cannot both receive and transmit simultaneously. During a step only non interfering transmissions can be done. In other words, the non interfering calls done during a step will form a matching. The aim is to minimize the number of steps needed to send to the base station a set of messages generated by the nodes, this completion time is also denoted makespan of the call scheduling. The best known algorithm for open-grids was a multiplicative 1.5-approximation algorithm [Revah, Segal 07]. In such topologies, we give a very simple +2 approximation algorithm and then a more involved +1 approximation algorithm. Moreover, our algorithms work when no buffering is allowed in intermediary nodes, i.e., when a node receives a message at some step, it must transmit it during the next step.

Keywords

Sensor Networks gathering makespan grid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klasing, R., Lotker, Z., Navarra, A., Pérennes, S.: From balls and bins to points and vertices. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 757–766. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Revah, Y., Segal, M.: Improved algorithms for data-gathering time in sensor networks ii: Ring, tree and grid topologies. In: Third International Conference on Networking and Services 2007. ICNS, p. 46 (2007)Google Scholar
  3. 3.
    Bermond, J.C., Guinand, F., Nisse, N., Reyes, P., Rivano, H.: Minimum delay data gathering in closed half-duplex grid. On-going work and discussions (June 2009)Google Scholar
  4. 4.
    Bonifaci, V., Klasing, R., Korteweg, P., Stougie, L., Marchetti-Spaccamela, A.: Data Gathering in Wireless Networks. In: Graphs and Algorithms in Communication Networks. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Gargano, L.: Time optimal gathering in sensor networks. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 7–10. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Florens, C., Franceschetti, M., McEliece, R.: Lower bounds on data collection time in sensory networks. IEEE Journal on Selected Areas in Communications 22(6), 1110–1120 (2004)CrossRefGoogle Scholar
  7. 7.
    Revah, Y., Segal, M.: Improved bounds for data-gathering time in sensor networks. Computer Communications 31(17), 4026–4034 (2008)CrossRefGoogle Scholar
  8. 8.
    Gargano, L., Rescigno, A.A.: Optimally fast data gathering in sensor networks. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 399–411. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Gargano, L., Rescigno, A.A.: Collision-free path coloring with application to minimum-delay gathering in sensor networks. Discrete Applied Maths (in Press)Google Scholar
  10. 10.
    Busch, C., Herlihy, M., Wattenhofer, R.: Hard-potato routing. In: Proceedings of the thirty-second annual ACM symposium on Theory of computing, Portland, Oregon, United States, pp. 278–285. ACM, New York (2000)Google Scholar
  11. 11.
    Mansour, Y., Patt-Shamir, B.: Many-to-one packet routing on grids. In: Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, Las Vegas, Nevada, United States, pp. 258–267. ACM, New York (1995)Google Scholar
  12. 12.
    Bermond, J.C., Galtier, J., Klasing, R., Morales, N., Pérennes, S.: Hardness and approximation of gathering in static radio networks. Parallel Processing Letters 16(2), 165–183 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: An approximation algorithm for the wireless gathering problem. Operations Research Letters 36(5), 605–608 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bermond, J.C., Peters, J.: Efficient gathering in radio grids with interference. In: Septièmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications (AlgoTel 2005), Presqu’île de Giens, pp. 103–106 (2005)Google Scholar
  15. 15.
    Gomes, C., Pérennes, S., Reyes, P., Rivano, H.: Bandwidth allocation in radio grid networks. In: 10èmes Rencontres Francophones sur les Aspects Algorithmiques de Télécommunications (AlgoTel 2008) (May 2008)Google Scholar
  16. 16.
    Bermond, J.C., Nisse, N., Reyes, P., Rivano, H.: Fast data gathering in radio grid networks. Technical Report RR-6851, INRIA (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jean-Claude Bermond
    • 1
  • Nicolas Nisse
    • 1
  • Patricio Reyes
    • 1
  • Hervé Rivano
    • 1
  1. 1.Mascotte ProjectINRIA–I3S(CNRS/UNSA)Sophia AntipolisFrance

Personalised recommendations