Superimposed Image Description and Retrieval for Fish Species Identification

  • Uma Murthy
  • Edward A. Fox
  • Yinlin Chen
  • Eric Hallerman
  • Ricardo da Silva Torres
  • Evandro J. Ramos
  • Tiago R. C. Falcão
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5714)

Abstract

Fish species identification is critical to the study of fish ecology and management of fisheries. Traditionally, dichotomous keys are used for fish identification. The keys consist of questions about the observed specimen. Answers to these questions lead to more questions till the reader identifies the specimen. However, such keys are incapable of adapting or changing to meet different fish identification approaches, and often do not focus upon distinguishing characteristics favored by many field ecologists and more user-friendly field guides. This makes learning to identify fish difficult for Ichthyology students. Students usually supplement the use of the key with other methods such as making personal notes, drawings, annotated fish images, and more recently, fish information websites, such as Fishbase. Although these approaches provide useful additional content, it is dispersed across heterogeneous sources and can be tedious to access. Also, most of the existing electronic tools have limited support to manage user created content, especially that related to parts of images such as markings on drawings and images and associated notes. We present SuperIDR, a superimposed image description and retrieval tool, developed to address some of these issues. It allows users to associate parts of images with text annotations. Later, they can retrieve images, parts of images, annotations, and image descriptions through text- and content-based image retrieval. We evaluated SuperIDR in an undergraduate Ichthyology class as an aid to fish species identification and found that the use of SuperIDR yielded a higher likelihood of success in species identification than using traditional methods, including the dichotomous key, fish web sites, notes, etc.

Keywords

superimposed information image annotation image retrieval fish species identification biodiversity user study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Page, L., Burr, B.: A Field Guide to Freshwater Fishes: North America North of Mexico (Peterson Field Guides). Houghton Mifflin Co., New York (1991)Google Scholar
  2. 2.
    WorldFishCenter: Fishbase: A global information system on fishes (1997), http://www.fishbase.org/home.htm
  3. 3.
    Helfrich, L., Newcomb, T., Hallerman, E., Stein, K.: Efish: The virtual aquarium (2001), http://www.cnr.vt.edu/efish/
  4. 4.
    da, S., Torres, R., Hallerman, E., Jenkins, R.E., Burkhead, N.M., Herrington, B.: Ekey - the electronic key for identifying freshwater fishes (2004), http://fwie.fw.vt.edu:8080/ekey/
  5. 5.
    Maier, D., Delcambre, L.M.L.: Superimposed information for the internet. In: WebDB (Informal Proceedings), pp. 1–9 (1999)Google Scholar
  6. 6.
    da, S., Torres, R., Falcão, A.X.: Content-based image retrieval: Theory and applications. Revista de Informática Teórica e Aplicada 13(2), 161–185 (2006)Google Scholar
  7. 7.
    da, S., Torres, R., Medeiros, C.B., Goncalves, M.A., Fox, E.A.: A digital library framework for biodiversity information systems. International Journal on Digital Libraries 6(1), 3–17 (2006)CrossRefGoogle Scholar
  8. 8.
    Kozievitch, N.P., Falcão, T.R.C., da, S., Torres, R.: A .Net implementation of a content-based image search component. In: Demo Session, 23th Brazilian Symposium on Databases, Campinas, Brazil (2008)Google Scholar
  9. 9.
    Murthy, U., da Silva Torres, R., Fox, E.A.: Sierra - a superimposed application for enhanced image description and retrieval. In: Gonzalo, J., Thanos, C., Verdejo, M.F., Carrasco, R.C. (eds.) ECDL 2006. LNCS, vol. 4172, pp. 540–543. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Jenkins, R.E., Burkhead, N.M.: Freshwater Fishes of Virginia. American Fisheries Society, Bethesda (1994)Google Scholar
  11. 11.
    McCullagh, P., Nelder, J.A.: Generalized linear models. CRC Press, Boca Raton (1989)CrossRefMATHGoogle Scholar
  12. 12.
    Lyons, J., Hanson, P., White, E.: A photo-based computer system for identifying wisconsin fishes. Fisheries 31(6), 269–275 (2006)CrossRefGoogle Scholar
  13. 13.
    Yu, Y., Stamberger, J.A., Manoharan, A., Paepcke, A.: EcoPod: a mobile tool for community based biodiversity collection building. In: JCDL 2006: Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 244–253. ACM Press, New York (2006)Google Scholar
  14. 14.
    Mayo, M., Watson, A.T.: Automatic species identification of live moths. Knowledge-Based Systems 20(2), 195–202 (2007)CrossRefGoogle Scholar
  15. 15.
    Jochum, W., Kaiser, M., Schellner, K., Wirl, F.: Living memory annotation tool — image annotations for digital libraries. In: Kovács, L., Fuhr, N., Meghini, C. (eds.) ECDL 2007. LNCS, vol. 4675, pp. 549–550. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Stein, A., Thiel, U., Brocks, H.: COLLATE – collaboratory for annotation, indexing and retrieval of digitized historical archive material (2004), http://www.collate.de/
  17. 17.
    Archer, D.W., Delcambre, L.M., Corubolo, F., Cassel, L., Price, S., Murthy, U., Maier, D., Fox, E.A., Murthy, S., Mccall, J., Kuchibhotla, K., Suryavanshi, R.: Superimposed information architecture for digital libraries. In: Christensen-Dalsgaard, B., Castelli, D., Ammitzbøll Jurik, B., Lippincott, J. (eds.) ECDL 2008. LNCS, vol. 5173, pp. 88–99. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Uma Murthy
    • 1
  • Edward A. Fox
    • 1
  • Yinlin Chen
    • 1
  • Eric Hallerman
    • 2
  • Ricardo da Silva Torres
    • 3
  • Evandro J. Ramos
    • 3
  • Tiago R. C. Falcão
    • 3
  1. 1.Department of Computer ScienceVirginia TechBlacksburgUSA
  2. 2.Department of Fisheries and Wildlife SciencesVirginia TechBlacksburgUSA
  3. 3.Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations