Modelling Image Complexity by Independent Component Analysis, with Application to Content-Based Image Retrieval

  • Jukka Perkiö
  • Aapo Hyvärinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5769)


Estimating the degree of similarity between images is a challenging task as the similarity always depends on the context. Because of this context dependency, it seems quite impossible to create a universal metric for the task. The number of low-level features on which the judgement of similarity is based may be rather low, however. One approach to quantifying the similarity of images is to estimate the (joint) complexity of images based on these features. We present a novel method to estimate the complexity of images, based on ICA. We further use this to model joint complexity of images, which gives distances that can be used in content-based retrieval. We compare this new method to two other methods, namely estimating mutual information of images using marginal Kullback-Leibler divergence and approximating the Kolmogorov complexity of images using Normalized Compression Distance.


Image complexity ICA NCD Kolmogorov complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cerra, D., Mallet, A., Gueguen, L., Datcu, M.: Complexity based analysis of earth observation imagery: an assessment. In: ESA-EUSC 2008: Image Information Mining: pursuing automation of geospatial intelligence for environment and security (March 2008)Google Scholar
  2. 2.
    Cilibrasi, R., Vitányi, P.: Clustering by compression. IEEE Transactions in Information Theory 51, 1523–1545 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Grunwald, P., Vitanyi, P.: Shannon information and kolmogorov complexity (October 2004),
  4. 4.
    Hyvärinen, A., Hurri, J., Hoyer, P.O.: Natural Image Statistics. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley Interscience, Hoboken (2001)CrossRefGoogle Scholar
  6. 6.
    Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.: The similarity metric. IEEE Transactions in Information Theory 50, 3250–3264 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Li, M., Zhu, Y.: Image classification via lz78 based string kernel: A comparative study. In: PAKDD, pp. 704–712 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jukka Perkiö
    • 1
    • 2
  • Aapo Hyvärinen
    • 1
    • 2
    • 3
  1. 1.Helsinki Institute for Information TechnologyFinland
  2. 2.Department of Computer ScienceFinland
  3. 3.Department of Mathematics and StatisticsUniversity of HelsinkiFinland

Personalised recommendations