Modelling Image Complexity by Independent Component Analysis, with Application to Content-Based Image Retrieval

  • Jukka Perkiö
  • Aapo Hyvärinen
Conference paper

DOI: 10.1007/978-3-642-04277-5_71

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5769)
Cite this paper as:
Perkiö J., Hyvärinen A. (2009) Modelling Image Complexity by Independent Component Analysis, with Application to Content-Based Image Retrieval. In: Alippi C., Polycarpou M., Panayiotou C., Ellinas G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg

Abstract

Estimating the degree of similarity between images is a challenging task as the similarity always depends on the context. Because of this context dependency, it seems quite impossible to create a universal metric for the task. The number of low-level features on which the judgement of similarity is based may be rather low, however. One approach to quantifying the similarity of images is to estimate the (joint) complexity of images based on these features. We present a novel method to estimate the complexity of images, based on ICA. We further use this to model joint complexity of images, which gives distances that can be used in content-based retrieval. We compare this new method to two other methods, namely estimating mutual information of images using marginal Kullback-Leibler divergence and approximating the Kolmogorov complexity of images using Normalized Compression Distance.

Keywords

Image complexity ICA NCD Kolmogorov complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jukka Perkiö
    • 1
    • 2
  • Aapo Hyvärinen
    • 1
    • 2
    • 3
  1. 1.Helsinki Institute for Information TechnologyFinland
  2. 2.Department of Computer ScienceFinland
  3. 3.Department of Mathematics and StatisticsUniversity of HelsinkiFinland

Personalised recommendations