LS Footwear Database - Evaluating Automated Footwear Pattern Analysis

  • Maria Pavlou
  • Nigel M. Allinson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5769)


Footwear marks recovered from crime scenes are an important source of forensic intelligence or evidence - for some crime types, there is a greater probably to recover footwear marks than fingerprint ones. Currently the process of identifying a specific shoe model from the 10,000s of possibilities is a time-consuming task for expert examiners. As with many other crime marks, for example latent fingerprints, there is an increasing need for automation. The emergent research effort in this field has been hampered by the lack of a suitable dataset of footwear impressions. We present, here, a substantial and fully characterized dataset together with a proposed methodology for its use.


Face Recognition Crime Scene Pattern Class Forensic Setting Latent Fingerprint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodziak, W.J. (ed.): Footwear Impression Evidence. CRC Press, Boca Raton (2000)Google Scholar
  2. 2.
    Hilderbrand, D.S. (ed.): Footwear, The Missed Evidence. Staggs Publishing (1999)Google Scholar
  3. 3.
    Pavlou, M., Allinson, N.M.: Footwear Recognition. In: Encyclopedia of Biometrics, pp. 1–10. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Pavlou, M., Allinson, N.M.: Automated encoding of footwear patterns for fast indexing. Image and Vision Computing 27(4), 402–409 (2009)CrossRefGoogle Scholar
  5. 5.
    Alexander, A., Bouridane, A., Crookes, D.: Automatic classi cation and recognition of shoeprints. In: Proc. Seventh International Conference on (Conf Image Processing and Its Applications Publ. No. 465), July 13–15, vol. 2, pp. 638–641 (1999)Google Scholar
  6. 6.
    Bouridane, A., Alexander, A., Nibouche, M., Crookes, D.: Application of fractals to the detection and classi cation of shoeprints. In: Proc. International Conference on Image Processing, September 10–13, vol. 1, pp. 474–477 (2000)Google Scholar
  7. 7.
    de Chazal, P., de Chazal, P., Flynn, J., Reilly, R.: Automated processing of shoeprint images based on the fourier transform for use in forensic science. Transactions on Pattern Analysis and Machine Intelligence 27(3), 341–350 (2005)CrossRefGoogle Scholar
  8. 8.
    Su, H., Crookes, D., Bouridane, A., Gueham, M.: Local image features for shoeprint image retrieval. In: British Machine Vision Conference 2007 (2007)Google Scholar
  9. 9.
    Zhang, L., Allinson, N.: Automatic shoeprint retrieval system for use in forensic investigations. In: 5th Annual UK Workshop on Computational Intelligence (2005)Google Scholar
  10. 10.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results (2007),
  11. 11.
    Jain, A., Duin, R., Jianchang, M.: Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar
  12. 12.
    Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, June 2005, vol. 1, pp. 947–954 (2005)Google Scholar
  13. 13.
    Li, S.Z., Jain, A.K. (eds.): Handbook of Face Recognition. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  14. 14.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Compututing Surveys 40(2), 1–60 (2008)CrossRefGoogle Scholar
  15. 15.
    Kulkarni, S., Lugosi, G., Venkatesh, S.: Learning pattern classi cation-a survey. IEEE Transactions on Information Theory 44(6), 2178–2206 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Poggio, T., Rifkin, R., Mukherjee, S., Niyogi, P.: General conditions for predictivity in learning theory. Nature 428(6981), 419–422 (2004)CrossRefGoogle Scholar
  17. 17.
    Fawcett, T.: An introduction to roc analysis. Pattern Recognition Letters 27(8), 861–874 (2006); ROC Analysis in Pattern RecognitionMathSciNetCrossRefGoogle Scholar
  18. 18.
    Makhoul, J., Kubala, F., Schwartz, R., Weischedel, R.: Performance measures for information extraction. In: Proceedings of DARPA Broadcast News Workshop, pp. 249–252 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Maria Pavlou
    • 1
  • Nigel M. Allinson
    • 1
  1. 1.University of SheffieldUK

Personalised recommendations