Outlier Analysis in BP/RP Spectral Bands

  • Diego Ordóñez
  • Carlos Dafonte
  • Minia Manteiga
  • Bernardino Arcay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5769)


Most astronomic databases include a certain amount of exceptional values that are generally called outliers. Isolating and analysing these “outlying objects” is important to improve the quality of the original dataset, to reduce the impact of anomalous observations, and most importantly, to discover new types of objects that were hitherto unknown because of their low frequency or short lifespan. We propose an unsupervised technique, based on artificial neural networks and combined with a specific study of the trained network, to treat the problem of outliers management. This work is an integrating part of the GAIA mission of the European Space Agency.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allende, C., Rebolo, R., Garcia, R., Serra-Ricart, M.: The int search for metal-poor stars. spectroscopic observations and classification via artificial neural networks. The Astronomical Journal 120, 1516–1531 (2000)CrossRefGoogle Scholar
  2. 2.
    Bailer-Jones, C.: Stellar parameters from very low resolution spectra and medium band filters. Astronomy and Astrophysics 357, 197–205 (2000)Google Scholar
  3. 3.
    Bailer-Jones, C.: A method for exploiting domain information in astrophysical parameter estimation. In: Astronomical Data Analysis Software and Systems XVII. ASP Conference Series, vol. XXX (2008)Google Scholar
  4. 4.
    Christlieb, N., Wisotzki, L., Graßhoff, G.: Statistical methods of automatic spectral classification and their application to the hamburg/eso sourvey. Astronomy and Astrophysics 391, 397–406 (2002)CrossRefGoogle Scholar
  5. 5.
    Fiorentin, P., Bailer-Jones, C., Lee, Y., Beers, T., Sivarani, T., Wilhelm, R., Allende, C., Norris, J.: Estimation of stellar atmospheric parameters from sdss/segue spectra. Astronomy and Astrophysics 467, 1373–1387 (2007)CrossRefGoogle Scholar
  6. 6.
    Hippel, T.V., Allende, C., Sneden, C.: Automated stellar spectral classification and parameterization for the masses. In: The Garrison Festschrift conference proceedings (June 2002)Google Scholar
  7. 7.
    Kaempf, T., Willemsen, P., Bailer-Jones, C., de Boer, K.: Parameterisation of rvs spectra with artificial neural networks first steps. In: 10th RVS workshop, Cambridge (September 2005)Google Scholar
  8. 8.
    Kohonen, T.: Self-organizing Maps. Springer Series in Information Sciences, Heidelberg (1995)CrossRefzbMATHGoogle Scholar
  9. 9.
    Ordonez, D., Dafonte, C., Arcay, B., Manteiga, M.: A canonical integrator environment for the development of connectionist systems. Dynamics of Continuous, Discrete and Impulsive Systems 14, 580–585 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Diego Ordóñez
    • 1
  • Carlos Dafonte
    • 1
  • Minia Manteiga
    • 2
  • Bernardino Arcay
    • 1
  1. 1.Department of Information and Communications TechnologiesUniversity of A CoruñaA CoruñaSpain
  2. 2.Department of Navigation and Earth SciencesUniversity of A CoruñaA CoruñaSpain

Personalised recommendations