Advertisement

Strengthening the Forward Variable Selection Stopping Criterion

  • Luis Javier Herrera
  • G. Rubio
  • H. Pomares
  • B. Paechter
  • A. Guillén
  • I. Rojas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5769)

Abstract

Given any modeling problem, variable selection is a preprocess step that selects the most relevant variables with respect to the output variable. Forward selection is the most straightforward strategy for variable selection; its application using the mutual information is simple, intuitive and effective, and is commonly used in the machine learning literature. However the problem of when to stop the forward process doesn’t have a direct satisfactory solution due to the inaccuracies of the Mutual Information estimation, specially as the number of variables considered increases. This work proposes a modified stopping criterion for this variable selection methodology that uses the Markov blanket concept. As it will be shown, this approach can increase the performance and applicability of the stopping criterion of a forward selection process using mutual information.

Keywords

Variable Selection Mutual Information Function Approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    François, D., Rossi, F., Wertz, V., Verleysen, M.: Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 70, 1276–1288 (2007)CrossRefGoogle Scholar
  2. 2.
    Rossi, F., Lendasse, A., François, D., Wertz, V., Verleysen, M.: Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chem. and Int. Lab. Syst. 80, 215–226 (2006)CrossRefGoogle Scholar
  3. 3.
    Kraskov, A., Stogbauer, H., Grassberger, P.: Estimating mutual information. Phys.Rev. E 69, 66138 (2004)MathSciNetGoogle Scholar
  4. 4.
    Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)CrossRefMATHGoogle Scholar
  5. 5.
    Koller, D., Sahami, M.: Toward optimal feature selection. In: Proc. Int. Conf. on Machine Learning, pp. 284–292 (1996)Google Scholar
  6. 6.
    Herrera, L., Pomares, H., Rojas, I., Verleysen, M., Guillén, A.: Effective input variable selection for function approximation. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 41–50. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Suykens, J., Gestel, T.V., Brabanter, J.D., Moor, J.D., Vandewalle, B.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)CrossRefMATHGoogle Scholar
  8. 8.
    Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual variables. In: Proceedings of the 15th International Conference on Machine Learning, pp. 515–521. Morgan Kaufmann, San Francisco (1998)Google Scholar
  9. 9.
    An, S., Liu, W., Venkatesh, S.: Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recogn. 40(8), 2154–2162 (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Guillen, A., Rojas, I., Rubio, G., Pomares, H., Herrera, L., Gonzalez, J.: A new interface for mpi in matlab and its application over a genetic algorithm. In: ESTSP 2008: Proceedings of the European Symposium on Time Series Prediction, pp. 37–46 (2008)Google Scholar
  11. 11.
  12. 12.
    Herrera, L., Pomares, H., Rojas, I., Guillén, A., Prieto, A., Valenzuela, O.: Recursive prediction for long term time series forecasting using advanced models. Neurocomputing 70, 2870–2880 (2007)CrossRefGoogle Scholar
  13. 13.
    Astakhov, S., Grassberger, P., Kraskov, A., Stögbauer, H.: Mutual information least dependent component analysis (2004), http://www.klab.caltech.edu/~kraskov/MILCA/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Luis Javier Herrera
    • 1
  • G. Rubio
    • 1
  • H. Pomares
    • 1
  • B. Paechter
    • 1
  • A. Guillén
    • 1
  • I. Rojas
    • 1
  1. 1.Department of Computer Architecture and TechnologyUniversity of GranadaSpain

Personalised recommendations