Epileptic Seizure Prediction and the Dimensionality Reduction Problem

  • André Ventura
  • João M. Franco
  • João P. Ramos
  • Bruno Direito
  • António Dourado
Conference paper

DOI: 10.1007/978-3-642-04277-5_1

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5769)
Cite this paper as:
Ventura A., Franco J.M., Ramos J.P., Direito B., Dourado A. (2009) Epileptic Seizure Prediction and the Dimensionality Reduction Problem. In: Alippi C., Polycarpou M., Panayiotou C., Ellinas G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg

Abstract

Seizures prediction may substantially improve the quality of life of epileptic patients. Processing EEG signals, by extracting a convenient set of features, is the most promising way to classify the brain state and to predict with some antecedence its evolution to a seizure condition. In this work neural networks are proposed as effective classifiers of brain state among 4 classes: interictal, preictal, ictal and postictal. A two channels set of 26 features is extracted. By correlation analysis and by extracting the principal components, a reduced features space is obtained where, by an appropriate neural network, over 90% successful classifications are achieved, for dataset with several patients from the Freiburg database.

Keywords

Classification Neural Networks Feature Selection PCA Correlation Epilepsy Seizure Prediction EEG Processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • André Ventura
    • 1
  • João M. Franco
    • 1
  • João P. Ramos
    • 1
  • Bruno Direito
    • 1
  • António Dourado
    • 1
  1. 1.Centro de Informática e Sistemas da Universidade de Coimbra Department of Informatics EngineeringPólo II University of CoimbraCoimbraPortugal

Personalised recommendations