Epileptic Seizure Prediction and the Dimensionality Reduction Problem

  • André Ventura
  • João M. Franco
  • João P. Ramos
  • Bruno Direito
  • António Dourado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5769)

Abstract

Seizures prediction may substantially improve the quality of life of epileptic patients. Processing EEG signals, by extracting a convenient set of features, is the most promising way to classify the brain state and to predict with some antecedence its evolution to a seizure condition. In this work neural networks are proposed as effective classifiers of brain state among 4 classes: interictal, preictal, ictal and postictal. A two channels set of 26 features is extracted. By correlation analysis and by extracting the principal components, a reduced features space is obtained where, by an appropriate neural network, over 90% successful classifications are achieved, for dataset with several patients from the Freiburg database.

Keywords

Classification Neural Networks Feature Selection PCA Correlation Epilepsy Seizure Prediction EEG Processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National Institute of Neurological Disorders and Stroke, http://www.ninds.nih.gov/disorders/epilepsy/epilepsy.htm
  2. 2.
    Wyllie, E.: Epilepsy - Information for You and Those Who Care About You. Cleveland Press (2008)Google Scholar
  3. 3.
    People against childhood epilepsy, http://www.paceusa.org/indexframe5.html
  4. 4.
    Swiderski, B., Osowski, S., Cichocki, A., Rysz, A.: Epileptic Seizure Prediction Using Lyapunov Exponents and Support Vector Machine. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 373–381. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Direito, B., Dourado, A., Vieira, M., Sales, M.: Combining energy and wavelet transform for epilectic seizure prediction in an advanced computational system. In: Proc. of the 2008 International Conference on Biomedical Engineering and Informatics BMEI2008, vol. 2, pp. 380–385, International Conference on Biomedical Engineering and informatics, Hainan, PR China (2008)Google Scholar
  6. 6.
    Mormann, F., Kreuz, T., Rieke, C., Andrzejak, R.G., Kraskov, A., David, P., Elger, C.E., Lehnertz, K.: On the predictability of epilectic seizures. Clinical Neurophysiology 116(3), 569–587 (2005)CrossRefGoogle Scholar
  7. 7.
    Jerger, K.K., Netoff, T.I., Francis, J.T., Sauer, T., Pecora, L., Weinstein, S.L., Schiff, S.J.: Early Seizure Detection. Journal of Cinical Neurophysiology 18, 259–269 (2001)CrossRefGoogle Scholar
  8. 8.
    Ahmad, T., Fairuz, R.A., Zakaria, F., Isa, H.: Selection of a Subset of EEG Channels of Epileptic Patient During Seizure Using PCA. In: Mathematics and Computers in Science, Proceedings of the 7th WSEAS International Conference on Signal Processing, Robotics and Automation, Cambridge, UK, pp. 270–273 (2008) ISBN   ISSN: 1790-5117, 978-960-6766-44-2Google Scholar
  9. 9.
    Hu, S., Stead, M., Worrel, G.: Removal of Scalp Reference Signal and Line Noise for Intracranial EEGs. In: IEEE International Conference on Networking, Sensing and Control, Sanya, China, pp. 1486–1491 (2008) ISBN: 978-1-4244-1685-1Google Scholar
  10. 10.
    Schelter, B., Winterhalder, M., Maiwald, T., Brandt, A., Schad, A., Timmer, J., Schulze-Bonhage, A.: Do false predictions of seizures depend on the state of vigilance? A report from two seizure prediction methods and proposed remedies. Epilepsia 47(12), 2058–2070 (2006)CrossRefMATHGoogle Scholar
  11. 11.
    The Mathworks, Inc. Natick, MAGoogle Scholar
  12. 12.
    Merkwirth, C., Parlitz, U., Wedekind, I., Lauterborn, W.: TSTOOL User Manual, Version 1.11., http://www.dpi.physik.uni-goettingen.de/tstool/HTML/index.html
  13. 13.
    Esteller, R., Echauz, J., DAlessandro, M., Worrell, G., et al.: Continuous Energy Variation During the Seizure Cycle: Towards an On-line Accumulated Energy. Clinical Neurophysiology 116(3), 517–526 (2005)CrossRefGoogle Scholar
  14. 14.
    Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K.: Seizure prediction: the long and winding road. Brain 130(2), 314–333 (2007)CrossRefGoogle Scholar
  15. 15.
    D’Alessandro, M., Vachtsevanos, G., Hinson, A., Esteller, R., Echauz, J., Litt, B.: A Genetic Approach to Selecting the Optimal Feature for Epileptic Seizure Prediction. In: IEEE International Conference on Engineering, Medicine and Biology, vol. 2, pp. 1703–1706 (2001) ISSN: 1094-687XGoogle Scholar
  16. 16.
    Schlens, J.: A Tutorial on Principal Component Analysis, http://www.cs.cmu.edu/~elaw/papers/pca.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • André Ventura
    • 1
  • João M. Franco
    • 1
  • João P. Ramos
    • 1
  • Bruno Direito
    • 1
  • António Dourado
    • 1
  1. 1.Centro de Informática e Sistemas da Universidade de Coimbra Department of Informatics EngineeringPólo II University of CoimbraCoimbraPortugal

Personalised recommendations