Unsupervised Learning in Reservoir Computing: Modeling Hippocampal Place Cells for Small Mobile Robots

  • Eric A. Antonelo
  • Benjamin Schrauwen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)


Biological systems (e.g., rats) have efficient and robust localization abilities provided by the so called, place cells, which are found in the hippocampus of rodents and primates (these cells encode locations of the animal’s environment). This work seeks to model these place cells by employing three (biologically plausible) techniques: Reservoir Computing (RC), Slow Feature Analysis (SFA), and Independent Component Analysis (ICA). The proposed architecture is composed of three layers, where the bottom layer is a dynamic reservoir of recurrent nodes with fixed weights. The upper layers (SFA and ICA) provides a self-organized formation of place cells, learned in an unsupervised way. Experiments show that a simulated mobile robot with 17 noisy short-range distance sensors is able to self-localize in its environment with the proposed architecture, forming a spatial representation which is dependent on the robot direction.


Reservoir computing slow feature analysis place cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  2. 2.
    Arleo, A., Smeraldi, F., Gerstner, W.: Cognitive navigation based on nonuniform gabor space sampling, unsupervised growing networks, and reinforcement learning. IEEE Transactions on Neural Networks 15(3), 639–652 (2004)CrossRefGoogle Scholar
  3. 3.
    Franzius, M., Sprekeler, H., Wiskott, L.: Slowness and sparseness lead to place, head-direction, and spatial-view cells. PLoS Comput. Biol. 3(8), 1605–1622 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Stroesslin, T., Sheynikhovich, D., Chavarriaga, R., Gerstner, W.: Robust self-localisation and navigation based on hippocampal place cells. Neural Networks 18(9), 1125–1140 (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chavarriaga, R., Strsslin, T., Sheynikhovich, D., Gerstner, W.: A computational model of parallel navigation systems in rodents. Neuroinformatics 3, 223–241 (2005)CrossRefGoogle Scholar
  6. 6.
    Moser, E.I., Kropff, E., Moser, M.B.: Place cells, grid cells and the brains spatial representation system. Annual Reviews of Neuroscience 31, 69–89 (2008)CrossRefGoogle Scholar
  7. 7.
    Schrauwen, B., Verstraeten, D., Van Campenhout, J.: An overview of reservoir computing: theory, applications and implementations. In: Proc. of ESANN (2007)Google Scholar
  8. 8.
    Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. Technical Report GMD Report 148, German National Research Center for Information Technology (2001)Google Scholar
  9. 9.
    Wiskott, L., Sejnowski, T.J.: Slow feature analysis: Unsupervised learning of invariances. Neural Computation 14(4), 715–770 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Networks 13, 411–430 (2000)CrossRefGoogle Scholar
  11. 11.
    Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Yamazaki, T., Tanaka, S.: The cerebellum as a liquid state machine. Neural Networks 20, 290–297 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Jaeger, H., Lukosevicius, M., Popovici, D.: Optimization and applications of echo state networks with leaky integrator neurons. Neural Networks 20, 335–352 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Berkes, P., Wiskott, L.: Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision 5, 579–602 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Antonelo, E.A., Baerlvedt, A.J., Rognvaldsson, T., Figueiredo, M.: Modular neural network and classical reinforcement learning for autonomous robot navigation: Inhibiting undesirable behaviors. In: Proceedings of IJCNN, Vancouver, Canada, pp. 498–505 (2006)Google Scholar
  16. 16.
    Antonelo, E.A., Schrauwen, B., Stroobandt, D.: Event detection and localization for small mobile robots using reservoir computing. Neural Networks 21, 862–871 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eric A. Antonelo
    • 1
  • Benjamin Schrauwen
    • 1
  1. 1.Electronics and Information Systems DepartmentGhent UniversityGhentBelgium

Personalised recommendations