Micro-SOM: A Linear-Time Multivariate Microaggregation Algorithm Based on Self-Organizing Maps

  • Agusti Solanas
  • Arnau Gavalda
  • Robert Rallo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)

Abstract

The protection of personal privacy is paramount, and consequently many efforts have been devoted to the study of data protection techniques. Governments, statistical agencies and corporations must protect the privacy of the individuals while guaranteeing the right of the society to knowledge. Microaggregation is one of the most promising solutions to deal with this praiseworthy task. However, its high computational cost prevents its use with large amounts of data. In this article we propose a new microaggregation algorithm that uses self-organizing maps to scale down the computational costs while maintaining a reasonable loss of information.

Keywords

Self-Organizing Maps Privacy k-Anonymity Microaggregation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brand, R.: Microdata protection through noise addition. In: Inference Control in Statistical Databases, From Theory to Practice, London, UK, pp. 97–116. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Moore Jr., R.: Controlled data-swapping techniques for masking public use microdata sets. Technical report, Statistical Research Division Report Series, RR 96-04, US Bureau of the Census, Washington D.C. (1996)Google Scholar
  3. 3.
    Burridge, J.: Information preserving statistical obfuscation. Statistics and Computing 13(4), 321–327 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Domingo-Ferrer, J., Sebé, F., Solanas, A.: A polynomial-time approximation to optimal multivariate microaggregation. Comput. Math. Appl. 55(4), 714–732 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Adam, N.R., Worthmann, J.C.: Security-control methods for statistical databases: a comparative study. ACM Comput. Surv. 21(4), 515–556 (1989)CrossRefGoogle Scholar
  6. 6.
    Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transactions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)CrossRefGoogle Scholar
  7. 7.
    Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10(5), 557–570 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Oganian, A., Domingo-Ferrer, J.: On the complexity of optimal microaggregation for statistical disclosure control. Statistical Journal of the United Nations Economic Comission for Europe 18(4), 345–354 (2001)Google Scholar
  9. 9.
    Laszlo, M., Mukherjee, S.: Minimum spanning tree partitioning algorithm for microaggregation. IEEE Transactions on Knowledge and Data Engineering 17(7), 902–911 (2005)CrossRefGoogle Scholar
  10. 10.
    Domingo-Ferrer, J., Torra, V.: Ordinal, continuous and heterogenerous k-anonymity through microaggregation. Data Mining and Knowledge Discovery 11(2), 195–212 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Solanas, A., Martínez-Ballesté, A.: V-MDAV: Variable group size multivariate microaggregation. In: COMPSTAT 2006, Rome, pp. 917–925 (2006)Google Scholar
  12. 12.
    Solanas, A., Martinez-Balleste, A., Mateo-Sanz, J.M., Domingo-Ferrer, J.: Multivariate microaggregation based on genetic algorithms. In: 3rd International IEEE Conference on Intelligent Systems, pp. 65–70 (2006)Google Scholar
  13. 13.
    Martinez-Balleste, A., Solanas, A., Domingo-Ferrer, J., Mateo-Sanz, J.: A genetic approach to multivariate microaggregation for database privacy. In: IEEE 23rd International Conference on Data Engineering Workshop, April 17-20, pp. 180–185 (2007)Google Scholar
  14. 14.
    Solanas, A., Pietro, R.: A linear-time multivariate micro-aggregation for privacy protection in uniform very large data sets. In: Torra, V., Narukawa, Y. (eds.) MDAI 2008. LNCS (LNAI), vol. 5285, pp. 203–214. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  16. 16.
    Kaski, S., Lagus, K.: Comparing self-organizing maps. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 809–814. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. 17.
    Davies, D., Bouldin, D.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(1), 224–227 (1979)CrossRefGoogle Scholar
  18. 18.
    Kangas, J.: Increasing the error tolerance in transmission of vector quantized images by self-organizing map. In: FogelmanSoulie, F., Gallinari, P. (eds.) Proc. ICANN 1995, Int. Conf. on Artificial Neural Networks, pp. 287–291 (1995)Google Scholar
  19. 19.
    Vesanto, J.: SOM-Based data visualization methods. In: Intelligent Data Analysis, vol. 3, pp. 111–126 (1999)Google Scholar
  20. 20.
    Koikkalainen, P., Oja, E.: Self-organizing hierarchical feature maps. In: International Joint Conference on Neural Networks (IJCNN 1990), pp. 279–284 (1990)Google Scholar
  21. 21.
    Kangas, J., Kohonen, T., Laaksonen, J.: Variants of the Self-organizing map. IEEE Transactions on Neural Networks 1(1), 93–99 (1990)CrossRefGoogle Scholar
  22. 22.
    Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-organizing map in Matlab: the SOM toolbox. In: Matlab DSP Conference, pp. 35–40 (1999)Google Scholar
  23. 23.
    Roussinov, D.G., Chen, H.: A scalable self-organizing map algorithm for textual classification: A neural network approach to thesaurus generation. Communication Cognition and Artificial Intelligence 15, 81–112 (Spring 1998)Google Scholar
  24. 24.
    Vesanto, J.: Neural network tool for data mining: Som toolbox. In: Proceedings of Symposium on Tool Environments and Development Methods for Intelligent Systems (TOOLMET 2000), Oulu, Finland, Oulun yliopistopiano, pp. 184–196 (2000)Google Scholar
  25. 25.
    Brand, R., Domingo-Ferrer, J., Mateo-Sanz, J.: Reference data sets to test and compare SDC methods for protection of numerical microdata. European Project IST-2000-25069 CASC (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Agusti Solanas
    • 1
  • Arnau Gavalda
    • 1
  • Robert Rallo
    • 1
  1. 1.Department of Computer Engineering and MathematicsRovira i Virgili UniversityCataloniaSpain

Personalised recommendations