Graph-Based Pancreatic Islet Segmentation for Early Type 2 Diabetes Mellitus on Histopathological Tissue

  • Xenofon Floros
  • Thomas J. Fuchs
  • Markus P. Rechsteiner
  • Giatgen Spinas
  • Holger Moch
  • Joachim M. Buhmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)

Abstract

It is estimated that in 2010 more than 220 million people will be affected by type 2 diabetes mellitus (T2DM). Early evidence indicates that specific markers for alpha and beta cells in pancreatic islets of Langerhans can be used for early T2DM diagnosis. Currently, the analysis of such histological tissues is manually performed by trained pathologists using a light microscope. To objectify classification results and to reduce the processing time of histological tissues, an automated computational pathology framework for segmentation of pancreatic islets from histopathological fluorescence images is proposed. Due to high variability in the staining intensities for alpha and beta cells, classical medical imaging approaches fail in this scenario.

The main contribution of this paper consists of a novel graph-based segmentation approach based on cell nuclei detection with randomized tree ensembles. The algorithm is trained via a cross validation scheme on a ground truth set of islet images manually segmented by 4 expert pathologists. Test errors obtained from the cross validation procedure demonstrate that the graph-based computational pathology analysis proposed is performing competitively to the expert pathologists while outperforming a baseline morphological approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

978-3-642-04271-3_77_MOESM1_ESM.pdf (373 kb)
Supplementary material (373 KB)

References

  1. 1.
    Kasuga, M.: Insulin resistance and pancreatic beta cell failure. J. Clin. Invest. 116(7), 1756–1760 (2006)CrossRefGoogle Scholar
  2. 2.
    Zimmet, P., Alberti, K.G., Shaw, J.: Global and societal implications of the diabetes epidemic. Nature 414(6865), 782–787 (2001)CrossRefGoogle Scholar
  3. 3.
    Vijan, S., Stevens, D.L., Herman, W.H., Funnell, M.M., Standiford, C.J.: Screening, prevention, counseling, and treatment for the complications of type ii diabetes mellitus. Putting evidence into practice. J. Gen. Intern. Med. 12(9), 567–580 (1997)CrossRefGoogle Scholar
  4. 4.
    Maedler, K., Schumann, D.M., Schulthess, F., Oberholzer, J., Bosco, D., Berney, T., Donath, M.Y.: Aging correlates with decreased beta-cell proliferative capacity and enhanced sensitivity to apoptosis: a potential role for fas and pancreatic duodenal homeobox-1. Diabetes 55(9), 2455–2462 (2006)CrossRefGoogle Scholar
  5. 5.
    Bonner-Weir, S., O’Brien, T.D.: Islets in type 2 diabetes: in honor of dr. robert c. turner. Diabetes 57(11), 2899–2904 (2008)CrossRefGoogle Scholar
  6. 6.
    Fuchs, T.J., Wild, P.J., Moch, H., Buhmann, J.M.: Computational pathology analysis of tissue microarrays predicts survival of renal clear cell carcinoma patients. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1–8. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)MATHCrossRefGoogle Scholar
  9. 9.
    Maier, M., Hein, M., von Luxburg, U.: Cluster identification in nearest-neighbor graphs. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 196–210. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  11. 11.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xenofon Floros
    • 1
    • 4
    • 5
  • Thomas J. Fuchs
    • 1
    • 4
    • 5
  • Markus P. Rechsteiner
    • 2
    • 5
  • Giatgen Spinas
    • 3
    • 5
  • Holger Moch
    • 2
    • 5
  • Joachim M. Buhmann
    • 1
    • 5
  1. 1.Department of Computer ScienceETH ZurichSwitzerland
  2. 2.Institute of Pathology, University Hospital ZurichUniversity Zurich 
  3. 3.Division of Endocrinology and DiabetesUniversity Hospital Zurich 
  4. 4.Life Science Zurich PhD Program on Systems Biology of Complex Diseases 
  5. 5.Competence Centre for Systems Physiology and Metabolic DiseasesZurich

Personalised recommendations