Steerable Features for Statistical 3D Dendrite Detection

  • Germán González
  • François Aguet
  • François Fleuret
  • Michael Unser
  • Pascal Fua
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)


Most state-of-the-art algorithms for filament detection in 3-D image-stacks rely on computing the Hessian matrix around individual pixels and labeling these pixels according to its eigenvalues. This approach, while very effective for clean data in which linear structures are nearly cylindrical, loses its effectiveness in the presence of noisy data and irregular structures.

In this paper, we show that using steerable filters to create rotationally invariant features that include higher-order derivatives and training a classifier based on these features lets us handle such irregular structures. This can be done reliably and at acceptable computational cost and yields better results than state-of-the-art methods.


Feature Vector Hessian Matrix Ground Truth Data Image Stack Reference Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aguet, F., Jacob, M., Unser, M.: Three-dimensional feature detection using optimal steerable filters. In: Proceedings of the 2005 IEEE International Conference on Image Processing (ICIP 2005), Genova, Italy, September 11-14, vol. II, pp. 1158–1161 (2005)Google Scholar
  2. 2.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3d multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis 2, 143–168 (1998)CrossRefGoogle Scholar
  4. 4.
    Streekstra, G., van Pelt, J.: Analysis of tubular structures in three-dimensional confocal images. Network: Computation in Neural Systems 13(3), 381–395 (2002)CrossRefGoogle Scholar
  5. 5.
    Meijering, E., Jacob, M., Sarria, J.C.F., Steiner, P., Hirling, H., Unser, M.: Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A 58A(2), 167–176 (2004)CrossRefGoogle Scholar
  6. 6.
    Al-Kofahi, K., Lasek, S., Szarowski, D., Pace, C., Nagy, G., Turner, J., Roysam, B.: Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Transactions on Information Technology in Biomedicine (2002)Google Scholar
  7. 7.
    Dima, A., Scholz, M., Obermayer, K.: Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-d wavelet transform. IEEE Transactions on Image Processing 11(7), 790–801 (2002)CrossRefGoogle Scholar
  8. 8.
    Tyrrell, J., di Tomaso, E., Fuja, D., Tong, R., Kozak, K., Jain, R., Roysam, B.: Robust 3D modeling of vasculature imagery using superellipsoids. Medical Imaging 26(2), 223–237 (2007)CrossRefGoogle Scholar
  9. 9.
    Schmitt, S., Evers, J.F., Duch, C., Scholz, M., Obermayer, K.: New methods for the computer-assisted 3D reconstruction of neurons from confocal image stacks. NeuroImage 23, 1283–1298 (2004)CrossRefGoogle Scholar
  10. 10.
    Agam, G., Wu, C.: Probabilistic modeling-based vessel enhancement in thoracic ct scans. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), Washington, DC, USA, vol. 2, pp. 684–689. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  11. 11.
    Santamaría-Pang, A., Colbert, C.M., Saggau, P., Kakadiaris, I.A.: Automatic centerline extraction of irregular tubular structures using probability volumes from multiphoton imaging. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 486–494. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Freeman, W., Adelson, E.: The design and use of steerable filters. Pattern Analysis and Machine Intelligence 13, 891–906 (1991)CrossRefGoogle Scholar
  13. 13.
    Jacob, M., Unser, M.: Design of steerable filters for feature detection using canny-like criteria. Pattern Analysis and Machine Intelligence 26(8), 1007–1019 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Germán González
    • 1
  • François Aguet
    • 2
  • François Fleuret
    • 1
    • 3
  • Michael Unser
    • 2
  • Pascal Fua
    • 1
  1. 1.Computer Vision LabEcole Polytechnique Fédérale de LausanneSwitzerland
  2. 2.Biomedical Imaging GroupEcole Polytechnique Fédérale de LausanneSwitzerland
  3. 3.Idiap Research InstituteMartignySwitzerland

Personalised recommendations