An Object-Based Method for Rician Noise Estimation in MR Images

  • Pierrick Coupé
  • José V. Manjón
  • Elias Gedamu
  • Douglas Arnold
  • Montserrat Robles
  • D. Louis Collins
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)


The estimation of the noise level in MR images is used to assess the consistency of statistical analysis or as an input parameter in some image processing techniques. Most of the existing Rician noise estimation methods are based on background statistics, and as such are sensitive to ghosting artifacts. In this paper, a new object-based method is proposed. This method is based on the adaptation of the Median Absolute Deviation (MAD) estimator in the wavelet domain for Rician noise. The adaptation for Rician noise is performed by using only the wavelet coefficients corresponding to the object and by correcting the estimation with an iterative scheme based on the SNR of the image. A quantitative validation on synthetic phantom with artefacts is presented and a new validation framework is proposed to perform quantitative validation on real data. The results show the accuracy and the robustness of the proposed method.


Noise Variance Wavelet Domain Median Absolute Deviation Rician Distribution Noise Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nowak, R.: Wavelet-based rician noise removal for magnetic resonance imaging. IEEE TIP 8(10), 1408–1419 (1999)Google Scholar
  2. 2.
    Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An Optimized Blockwise NonLocal Means Denoising Filter for 3-D Magnetic Resonance Images. IEEE Transactions on Medical Imaging 27(4), 425–441 (2008)CrossRefGoogle Scholar
  3. 3.
    Henkelman, R.M.: Measurement of signal intensities in the presence of noise in MR images. Medical Physics 12(2), 232–233 (1985)CrossRefGoogle Scholar
  4. 4.
    Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine 34, 910–914 (1995)CrossRefGoogle Scholar
  5. 5.
    Koay, C.G., Basser, P.J.: Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. Journal of Magnetic Resonance 179(2), 317–322 (2006)CrossRefGoogle Scholar
  6. 6.
    Sijbers, J., Poot, D., den Dekker, A.J., Pintjens, W.: Automatic estimation of the noise variance from the histogram of a magnetic resonance image. Physics in Medicine and Biology 52(5), 1335–1348 (2007)CrossRefGoogle Scholar
  7. 7.
    Aja-Fernandez, S., Alberola-Lopez, C., Westin, C.F.: Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE TIP 17(8), 1383–1398 (2008)Google Scholar
  8. 8.
    Sijbers, J., den Dekker, A., Audekerke, J.V., Verhoye, M., Dyck, D.V.: Estimation of the noise in magnitude MR images. Magnetic Resonance Imaging 16(1), 87–90 (1998)CrossRefGoogle Scholar
  9. 9.
    Donoho, D.: De-noising by Soft-Thresholding. IEEE TIT 41(3), 613–627 (1995)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Dietrich, O., Raya, J.G., Reeder, S.B., Ingrisch, M., Reiser, M.F., Schoenberg, S.O.: Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magnetic Resonance Imaging 26(6), 754–762 (2008)CrossRefGoogle Scholar
  11. 11.
    Landman, B., Bazin, P.L., Prince, J.: Diffusion Tensor Estimation by Maximizing Rician Likelihood. In: ICCV 2007, pp. 1–8 (2007)Google Scholar
  12. 12.
    Collins, D., Zijdenbos, A., Kollokian, V., Sled, J., Kabani, N., Holmes, C., Evans, A.: Design and construction of a realistic digital brain phantom. IEEE TMI 17(3), 463–468 (1998)Google Scholar
  13. 13.
    Gedamu, E.L., Collins, D.L., Arnold, D.L.: Automated quality control of brain MR images. Journal of Magnetic Resonance Imaging 28(2), 308–319 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pierrick Coupé
    • 1
  • José V. Manjón
    • 2
  • Elias Gedamu
    • 1
  • Douglas Arnold
    • 1
  • Montserrat Robles
    • 2
  • D. Louis Collins
    • 1
  1. 1.McConnell Brain Imaging Centre, Montréal Neurological InstituteMcGill UniversityMontréalCanada
  2. 2.Biomedical Informatics Group (IBIME), ITACA InstituteUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations