Advertisement

Multiple Q-Shell ODF Reconstruction in Q-Ball Imaging

  • Iman Aganj
  • Christophe Lenglet
  • Guillermo Sapiro
  • Essa Yacoub
  • Kamil Ugurbil
  • Noam Harel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)

Abstract

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which has been proven very successful in resolving multiple intravoxel fiber orientations in MR images. The standard computation of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball uses linear radial projection, neglecting the change in the volume element along the ray, thereby resulting in distributions different from the true ODFs. A new technique has been recently proposed that, by considering the solid angle factor, uses the mathematically correct definition of the ODF and results in a dimensionless and normalized ODF expression from a single q-shell. In this paper, we extend this technique in order to exploit HARDI data from multiple q-shells. We consider the more flexible multi-exponential model for the diffusion signal, and show how to efficiently compute the ODFs in constant solid angle. We describe our method and demonstrate its improved performance on both artificial and real HARDI data.

Keywords

Probability Density Function Orientation Distribution Function Diffusion Signal Spherical Harmonic Coefficient Diffusion Spectrum Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wedeen, V., Hagmann, P., Tseng, W., Reese, T., Weisskoff, R.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine 54(6), 1377–1386 (2005)CrossRefGoogle Scholar
  2. 2.
    Tuch, D., Reese, T., Wiegell, M., Makris, N., Belliveau, J., Wedeen, V.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine 48(4), 577–582 (2002)CrossRefGoogle Scholar
  3. 3.
    Tuch, D.: Q-ball imaging. Magnetic Resonance in Medicine 52(6), 1358–1372 (2004)CrossRefGoogle Scholar
  4. 4.
    Khachaturian, M.H., Wisco, J.J., Tuch, D.S.: Boosting the sampling efficiency of q-ball imaging using multiple wavevector fusion. Magn. Res. Med. 57(2), 289–296 (2007)CrossRefGoogle Scholar
  5. 5.
    Wu, Y.C., Field, A.S., Alexander, A.L.: Computation of diffusion function measures in q-space using magnetic resonance hybrid diffusion imaging. IEEE Trans. on Medical Imaging 27(6), 858–865 (2008)CrossRefGoogle Scholar
  6. 6.
    Aganj, I., Lenglet, C., Sapiro, G.: ODF reconstruction in q-ball imaging with solid angle consideration. In: Proc. 6th Intl. Symp. on Biomedical Imaging, Boston (2009)Google Scholar
  7. 7.
    Tristán-Vega, A., Westin, C., Aja-Fernández, S.: Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging. NeuroImage 47(2), 623–650 (2009)CrossRefGoogle Scholar
  8. 8.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magnetic Resonance in Medicine 58(2), 497–510 (2007)CrossRefGoogle Scholar
  9. 9.
    Özarslan, E., Shepherd, T., Vemuri, B., Blackband, S., Mareci, T.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31, 1086–1103 (2006)CrossRefGoogle Scholar
  10. 10.
    Branch, M.A., Coleman, T.F., Li, Y.: A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. on Scientific Computing 21(1), 1–23 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Yeh, C.H., Cho, K.H., Lin, H.C., Wang, J.J., Lin, C.P.: Reduced encoding diffusion spectrum imaging implemented with a bi-Gaussian model. IEEE Trans. on Medical Imaging 27(10), 1415–1424 (2008)CrossRefGoogle Scholar
  12. 12.
    Lenglet, C., Yacoub, E., Ghose, G., Adriany, G., Krüger, G., Sapiro, G., Ugurbil, K., Harel, N.: High resolution diffusion MRI on in-vivo monkey brains at 7T. In: Proc. 14th Annual Meeting of the Organization for Human Brain Mapping, San Francisco (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Iman Aganj
    • 1
  • Christophe Lenglet
    • 1
    • 2
  • Guillermo Sapiro
    • 1
  • Essa Yacoub
    • 2
  • Kamil Ugurbil
    • 2
  • Noam Harel
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of MinnesotaUSA
  2. 2.Center for Magnetic Resonance ResearchUniversity of MinnesotaUSA

Personalised recommendations