Spatio-temporal Reconstruction of dPET Data Using Complex Wavelet Regularisation

  • Andrew McLennan
  • Michael Brady
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)

Abstract

Traditionally, dynamic PET studies reconstruct temporally contiguous PET images using algorithms which ignore the inherent consistency between frames. We present a method which imposes a regularisation constraint based on wavelet denoising. This is achieved efficiently using the Dual Tree – Complex Wavelet Transform (DT-CWT) of Kingsbury, which has many important advantages over the traditional discrete wavelet transform: shift invariance, implicit measure of local phase, and directional selectivity. In this paper, we apply the decomposition to the full spatio-temporal volume and use it for the reconstruction of dynamic (spatio-temporal) PET data.

Instead of using traditional wavelet thresholding schemes we introduce a locally defined and empirically-determined Cross Scale regularisation technique. We show that wavelet based regularisation has the potential to produce superior reconstructions and examine the effect various levels of boundary enhancement have on the overall images.

We demonstrate that wavelet-based spatio-temporally regularised reconstructions have superior performance over conventional Gaussian smoothing in simulated and clinical experiments. We find that our method outperforms conventional methods in terms of signal-to-noise ratio (SNR) and Mean Square Error (MSE), and removes the need to post-smooth the reconstruction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nichols, T., Qi, J., Asma, E., Leahy, R.: Spatiotemporal Reconstruction of List Mode PET Data. Trans. Med. Imag. 23(4), 396–404 (2002)CrossRefGoogle Scholar
  2. 2.
    Reader, A.J., Matthews, J.C., Sureau, F.C., Comtat, C., Trebossen, R., Buvat, I.: Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction. IEEE Nuc. Sci. Symp. Conf. 3, 1752–1756 (2006)Google Scholar
  3. 3.
    Kamasak, M.E., Bouman, C.A., et al.: Direct Reconstruction of Kinetic Parameter Images from Dynamic PET Data. IEEE Tran. Med. Imag. 24(5), 636–650 (2005)CrossRefGoogle Scholar
  4. 4.
    Carson, R., Lange, K.: The EM Parametric Image Reconstruction Algorithm. J. Am. Stat. Assoc. 80, 20–22 (1985)CrossRefGoogle Scholar
  5. 5.
    Kao, C.M., Yap, J.T., Mukherjee, J., Wernick, M.N.: Image Reconstruction for Dynamic PET Based on Low-Order Approximation and Restoration of the Sinogram. IEEE Transactions on Medical Imaging 16(6), 738–749 (1997)CrossRefGoogle Scholar
  6. 6.
    Wernick, M.N., Infusino, E.J., Milosevic, M.: Fast Spatio-Temporal Image Reconstruction for Dynamic PET. IEEE Trans. on Med. Imag. 18(3), 185–195 (1999)CrossRefGoogle Scholar
  7. 7.
    Shidahara, M., Ikoma, Y., Kershaw, J., Kimura, Y., Naganawa, M., Watabe, H.: PET Kinetic Analysis: Wavelet Denoising of Dynamic PET Data with Application to Parametric Imaging. Ann. Nucl. Med. 21, 379–386 (2007)CrossRefGoogle Scholar
  8. 8.
    Lee, N.Y., Choi, Y.: A Modified OSEM Algorithm for PET Reconstruction using Wavelet Processing. Comp. Meth. Prog. Biomed. 80(3), 236–245 (2005)CrossRefGoogle Scholar
  9. 9.
    Bhatia, M., Karl, W.C., Willsky, A.S.: A Wavelet-based Method for Multiscale Tomographic Reconstruction. IEEE Trans. Med. Imag. 15(1), 92–101 (1996)CrossRefGoogle Scholar
  10. 10.
    Verhaeghe, J., Ville, D.V., Khalidov, I., d’Asseler, Y., Lemahieu, I., Unser, M.: Dynamic PET Reconstruction Using Wavelet Regularization With Adapted Basis Functions. MedImg. 27(7), 943–959 (2008)Google Scholar
  11. 11.
    Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The Dual-Tree Complex Wavelet Transform. IEEE Signal Processing Magazine 22(6), 123–151 (2005)CrossRefGoogle Scholar
  12. 12.
    Shepp, L., et al.: Maximum Likelihood Reconstruction for Emission Tomography. Tran. Med. Imag. 1(2), 113–122 (1982)CrossRefGoogle Scholar
  13. 13.
    Reilhac, A., Lartizien, C., et al.: PET-SORTEO: A Monte Carlo-based Simulator with High Count Rate Capabilities. IEEE Trans. Nuc. Sci. 51(1), 46–52 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrew McLennan
    • 1
  • Michael Brady
    • 1
  1. 1.Department of Engineering ScienceUniversity of OxfordUK

Personalised recommendations