Spatio-temporal Reconstruction of dPET Data Using Complex Wavelet Regularisation

  • Andrew McLennan
  • Michael Brady
Conference paper

DOI: 10.1007/978-3-642-04271-3_49

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)
Cite this paper as:
McLennan A., Brady M. (2009) Spatio-temporal Reconstruction of dPET Data Using Complex Wavelet Regularisation. In: Yang GZ., Hawkes D., Rueckert D., Noble A., Taylor C. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009. MICCAI 2009. Lecture Notes in Computer Science, vol 5762. Springer, Berlin, Heidelberg

Abstract

Traditionally, dynamic PET studies reconstruct temporally contiguous PET images using algorithms which ignore the inherent consistency between frames. We present a method which imposes a regularisation constraint based on wavelet denoising. This is achieved efficiently using the Dual Tree – Complex Wavelet Transform (DT-CWT) of Kingsbury, which has many important advantages over the traditional discrete wavelet transform: shift invariance, implicit measure of local phase, and directional selectivity. In this paper, we apply the decomposition to the full spatio-temporal volume and use it for the reconstruction of dynamic (spatio-temporal) PET data.

Instead of using traditional wavelet thresholding schemes we introduce a locally defined and empirically-determined Cross Scale regularisation technique. We show that wavelet based regularisation has the potential to produce superior reconstructions and examine the effect various levels of boundary enhancement have on the overall images.

We demonstrate that wavelet-based spatio-temporally regularised reconstructions have superior performance over conventional Gaussian smoothing in simulated and clinical experiments. We find that our method outperforms conventional methods in terms of signal-to-noise ratio (SNR) and Mean Square Error (MSE), and removes the need to post-smooth the reconstruction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrew McLennan
    • 1
  • Michael Brady
    • 1
  1. 1.Department of Engineering ScienceUniversity of OxfordUK

Personalised recommendations