Dynamic Cone Beam Reconstruction Using a New Level Set Formulation

  • Andreas Keil
  • Jakob Vogel
  • Günter Lauritsch
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)


This paper addresses an approach toward tomographic reconstruction from rotational angiography data as it is generated by C-arms in cardiac imaging. Since the rotational acquisition scheme forces a trade-off between consistency of the scene and reasonable baselines, most existing reconstruction techniques fail at recovering the 3D+t scene.

We propose a new reconstruction framework based on variational level sets including a new data term for symbolic reconstruction as well as a novel incorporation of motion into the level set formalism. The resulting simultaneous estimation of shape and motion proves feasible in the presented experiments. Since the proposed formulation offers a great flexibility in incorporating other data terms as well as hard or soft constraints, it allows an adaption to a wider range of problems and could be of interest to other reconstruction settings as well.


Active Contour Soft Constraint Tomographic Reconstruction Algebraic Reconstruction Technique Simultaneous Algebraic Reconstruction Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-3-642-04271-3_48_MOESM1_ESM.pdf (146 kb)
Supplementary material (146 KB)

Supplementary material (439 KB)

978-3-642-04271-3_48_MOESM3_ESM.avi (3.1 mb)
Supplementary material (3,197 KB)

Supplementary material (570 KB)

Supplementary material (544 KB)

Supplementary material (375 KB)


  1. 1.
    Blondel, C., Malandain, G., Vaillant, R., Ayache, N.: Reconstruction of coronary arteries from a single rotational X-ray projection sequence. IEEE TMI 25(5), 653–663 (2006)Google Scholar
  2. 2.
    Hansis, E., Schäfer, D., Dössel, O., Grass, M.: Projection-based motion compensation for gated coronary artery reconstruction from rotational x-ray angiograms. Phys. Med. Biol. 53 (2008)Google Scholar
  3. 3.
    Movassaghi, B., Schaefer, D., Grass, M., Rasche, V., Wink, O., Garcia, J.A., Chen, J.Y., Messenger, J.C., Carroll, J.D.: 3D reconstruction of coronary stents in vivo based on motion compensated X-ray angiograms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 177–184. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1(6), 612–619 (1984)CrossRefGoogle Scholar
  5. 5.
    Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3) (1970)Google Scholar
  6. 6.
    Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm. US Imag. 6(1) (1984)Google Scholar
  7. 7.
    Prümmer, M., Wigström, L., Hornegger, J., Boese, J., Lauritsch, G., Strobel, N., Fahrig, R.: Cardiac C-arm CT: Efficient motion correction for 4D-FBP. In: NSS and MIC, pp. 1–20. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Schäfer, D., Borgert, J., Rasche, V., Grass, M.: Motion-compensated and gated cone beam filtered back-projection for 3-D rotational X-ray angiography. IEEE TMI 25(7), 898–906 (2006)Google Scholar
  9. 9.
    Yoon, S., Pineda, A.R., Fahrig, R.: Level set reconstruction for sparse angularly sampled data. In: NSS and MIC, vol. 6, pp. 3420–3423 (2006)Google Scholar
  10. 10.
    Rathi, Y., Vaswani, N., Tannenbaum, A., Yezzi, A.: Particle filtering for geometric active contours with application to tracking moving and deforming objects. In: CVPR, vol. 2, pp. 2–9. IEEE, Los Alamitos (2005)Google Scholar
  11. 11.
    Cremers, D.: Dynamical statistical shape priors for level set-based tracking. IEEE Trans. PAMI 28(8), 1262–1273 (2006)Google Scholar
  12. 12.
    Franco, J.S., Boyer, E.: Fusion of multi-view silhouette cues using a space occupancy grid. In: ICCV, vol. 2, pp. 1747–1753 (2005)Google Scholar
  13. 13.
    Blume, M., Keil, A., Navab, N., Rafecas, M.: Blind motion compensation for positron-emission-tomography. In: SPIE Med. Imag. Proc. of the SPIE (2009)Google Scholar
  14. 14.
    Chan, T.F., Vese, L.A.: Active contours without edges. In: IEEE TIP, vol. 10(2) (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andreas Keil
    • 1
  • Jakob Vogel
    • 1
  • Günter Lauritsch
    • 2
  • Nassir Navab
    • 1
  1. 1.Computer Aided Medical ProceduresTU MünchenGermany
  2. 2.Siemens AGHealthcare SectorForchheimGermany

Personalised recommendations