Incompressible Cardiac Motion Estimation of the Left Ventricle Using Tagged MR Images

  • Xiaofeng Liu
  • Khaled Z. Abd-Elmoniem
  • Jerry L. Prince
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)


Interpolation from sparse imaging data is typically required to achieve dense, three-dimensional quantification of left ventricular function. Although the heart muscle is known to be incompressible, this fact is ignored by most previous approaches that address this problem. In this paper, we present a method to reconstruct a dense representation of the three-dimensional, incompressible deformation of the left ventricle from tagged MR images acquired in both short-axis and long axis orientations. The approach applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, the method yields a dense estimate of a displacement field that matches our observations and also corresponds to an incompressible motion.


Short Axis Slice Short Axis Image Jacobian Determinant Myocardial Motion Harmonic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Axel, L., Dougherty, L.: MR imaging of motion with spatial modulation of magnetization. Radiology 171, 841–845 (1989)Google Scholar
  2. 2.
    Yin, F., Chan, C., Judd, R.: Compressibility of perfused passive myocardium. Amer. J. Physiol.-Heart Circ. Physiol. 8, 1864–1870 (1996)Google Scholar
  3. 3.
    Song, S.M., Leahy, R.M.: Computation of 3-D velocity fields from 3-d cine CT images of a human heart. IEEE Trans. Med. Imag. 10(3), 295–306 (1991)CrossRefGoogle Scholar
  4. 4.
    Denney, T., Prince, J.L.: Reconstruction of 3D left ventricular motion from planar tagged cardiac MR images: an estimation theoretic approach. IEEE Trans. Med. Imag. 14(4), 625–635 (1995)CrossRefGoogle Scholar
  5. 5.
    Bistoquet, A., Oshinski, J., Skrinjar, O.: Myocardial deformation recovery from cine MRI using a nearly incompressible biventricular model. Med. Imag. Anal. 12, 69–85 (2008)CrossRefGoogle Scholar
  6. 6.
    Amodei, L., Benbourhim, M.N.: A vector spline approximation. J. Approx. Theo. 67(1), 51–79 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Arigovindan, M.: Variational reconstruction of vector and scalar images from non-uniform samples. PhD thesis, École Polytechnique Federale de Lausanne (2005)Google Scholar
  8. 8.
    Osman, N.F., Kerwin, W.S., McVeigh, E.R., Prince, J.L.: Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn. Reson. Med. 42, 1048–1060 (1999)CrossRefGoogle Scholar
  9. 9.
    Tecelao, S.R., Zwanenburg, J.J., Kuijer, J.P., Marcus, J.T.: Extended harmonic phase tracking of myocardial motion: improved coverage of myocardium and its effect on strain results. J. Magn. Reson. Imag. 23(5), 682–690 (2006)CrossRefGoogle Scholar
  10. 10.
    Bistoquet, A., Oshinski, J., Skrinjar, O.: Left ventricle deformation recovery from cine MRI using an incompressible model. IEEE Trans. Med. Imag. 26(9), 1136–1153 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xiaofeng Liu
    • 1
  • Khaled Z. Abd-Elmoniem
    • 3
  • Jerry L. Prince
    • 1
    • 2
  1. 1.Departments of Computer Science 
  2. 2.Electrical and Computer Engineering 
  3. 3.Radiology and Radiological Science Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations