A Hybrid 1D and 3D Approach to Hemodynamics Modelling for a Patient-Specific Cerebral Vasculature and Aneurysm

  • Harvey Ho
  • Gregory Sands
  • Holger Schmid
  • Kumar Mithraratne
  • Gordon Mallinson
  • Peter Hunter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)


In this paper we present a hybrid 1D/3D approach to haemodynamics modelling in a patient-specific cerebral vasculature and aneurysm. The geometric model is constructed from a 3D CTA image. A reduced form of the governing equations for blood flow is coupled with an empirical wall equation and applied to the arterial tree. The equation system is solved using a MacCormack finite difference scheme and the results are used as the boundary conditions for a 3D flow solver. The computed wall shear stress (WSS) agrees with published data.


Wall Shear Stress Intracranial Aneurysm Cerebral Aneurysm Arterial Tree Cerebral Vasculature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Suarez, J.I., Tarr, R.W., Selman, W.R.: Aneurysmal subarachnoid hemorrhage. The New England Journal of Medicine 354(4), 387–396 (2006)CrossRefGoogle Scholar
  2. 2.
    Shojima, M., Oshima, M., Takagi, K., Torii, R., Hayakawa, M., Katada, K., Morita, A., Kirino, T.: Magnitude and role of wall shear stress on cerebral aneurysm. Stroke 35, 2500–2505 (2004)CrossRefGoogle Scholar
  3. 3.
    Cebral, J., Yim, P.J., Lohner, R., Soto, O., Choyke, P.L.: Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Academic Radiology 9(11), 1286–1299 (2002)CrossRefGoogle Scholar
  4. 4.
    Liou, T., Li, Y., Juan, W.: Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles. Journal of Biomechanics 40, 1268–1275 (2007)CrossRefGoogle Scholar
  5. 5.
    Steinman, D., Milner, J., Norley, C.J., Lownie, S.P., Holdsworth, D.W.: Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. American Journal of Neuroradiology, 559–566 (2003)Google Scholar
  6. 6.
    Alastruey, J., Parker, K., Peiro, J., Byrd, S., Sherwin, S.: Modelling the circle of willis to assess the effects of anatomical variations and occlusions on cerebral flows. Journal of Biomechanics 40, 1794–1805 (2007)CrossRefGoogle Scholar
  7. 7.
    Smith, N.P., Pullan, A.J., Hunter, P.J.: An anatomically based model of transient coronary blood flow in the heart. SIAM Journal of Applied Mathematics 62(3), 990–1018 (2000)MathSciNetGoogle Scholar
  8. 8.
    Formaggia, L., Gerbeau, J.F., Nobile, F., Quarteroni, A.: On the coupling of 3d and 1d navier-stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics and Engineering 191, 561–582 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Urquiza, S.A., Blanco, P.J., Venere, M.J., Feijoo, R.: Multidimensional modelling for the carotid artery blood flow. Computer Methods in Applied Mechanics and Engineering 195, 4002–4017 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    ANSYS: ANSYS CFX-Solver, Release 10.0: Theory. ANSYS Europe Ltd (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Harvey Ho
    • 1
  • Gregory Sands
    • 1
  • Holger Schmid
    • 2
  • Kumar Mithraratne
    • 1
  • Gordon Mallinson
    • 3
  • Peter Hunter
    • 1
  1. 1.Bioengineering InstituteUniversity of AucklandNew Zealand
  2. 2.Department of Continuum MechanicsRWTH Aachen UniversityGermany
  3. 3.Department of Mechanical EngineeringUniversity of AucklandNew Zealand

Personalised recommendations