Parametric Representation of Cortical Surface Folding Based on Polynomials

  • Tuo Zhang
  • Lei Guo
  • Gang Li
  • Jingxin Nie
  • Tianming Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)


The development of folding descriptors as an effective approach for describing geometrical complexity and variation of the human cerebral cortex has been of great interests. This paper presents a parametric representation of cortical surface patches using polynomials, that is, the primitive cortical patch is compactly and effectively described by four parametric coefficients. By this parametric representation, the patterns of cortical patches can be classified by either model-driven approach or data-driven clustering approach. In the model-driven approach, any patch of the cortical surface is classified into one of eight primitive shape patterns including peak, pit, ridge, valley, saddle ridge, saddle valley, flat and inflection, corresponding to eight sub-spaces of the four parameters. The major advantage of this polynomial representation of cortical folding pattern is its compactness and effectiveness, while being rich in shape information. We have applied this parametric representation for segmentation of cortical surface and promising results are obtained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fischl, B., Rajendran, N., Busa, E., Augustinack, J., Hinds, O., Yeo, B.T., Mohlberg, H., Amunts, K., Zilles, K.: Cortical Folding Patterns and Predicting Cytoarchitecture. Cereb Cortex 18(8), 1973–1980 (2008)CrossRefGoogle Scholar
  2. 2.
    Van Essen, D.C.: A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313–318 (1997)CrossRefGoogle Scholar
  3. 3.
    Toro, R., Burnod, Y.: A Morphogenetic Model of the Development of Cortical Convolutions. Cerebral Cortex 15, 1900–1913 (2005)CrossRefGoogle Scholar
  4. 4.
    Van Essen, D.C., Dierker, D., Snyder, A.Z., Raichle, M.E., Reiss, A.L., Korenberg, J.: Symmetry of Cortical Folding Abnormalities in Williams Syndrome Revealed by Surface-Based Analyses. J. Neurosci. 26(20), 5470–5483 (2006)CrossRefGoogle Scholar
  5. 5.
    Sallet, P.C., Elkis, H., Alves, T.M., Oliveira, J.R., Sassi, E., Campi de Castro, C., Busatto, G.F., Gattaz, W.F.: Reduced Cortical Folding in Schizophrenia: An MRI Morphometric Study. Am. J. Psychiatry 160, 1606–1613 (2003)CrossRefGoogle Scholar
  6. 6.
    Elias, H., Schwartz, D.: Surface areas of the cerebral cortex of mammals determined by stereological methods. Science 166, 111–113 (1969)CrossRefGoogle Scholar
  7. 7.
    Zilles, K., Armstrong, E., Schleicher, A., Kretschmann, H.J.: The human pattern of gyrification in the cerebral cortex. Anat. Embryol. (Berl) 179, 173–179 (1988)CrossRefGoogle Scholar
  8. 8.
    Hardan, A.Y., Jou, R.J., Keshavan, M.S., Varma, R., Minshew, N.J.: Increased frontal cortical folding in autism: a preliminary MRI study. Psychiatry Research 131(3), 263–268 (2004)CrossRefGoogle Scholar
  9. 9.
    Neal, J., Takahashi, M., Silva, M., Tiao, G., Walsh, C.A., Sheen, V.L.: Insights into the gyrification of developing ferret brain by magnetic resonance imaging. J. Anat. 210(1), 66–77 (2007)CrossRefGoogle Scholar
  10. 10.
    Schaer, M., Cuadra, M.B., Tamarit, L., Lazeyras, F., Eliez, S., Thiran, J.P.: A Surface-based approach to Quantify Local Cortical Gyrification. IEEE Trans. TMI 27(2), 161–170 (2008)Google Scholar
  11. 11.
    Cachia, A., Mangin, J.F., Rivière, D., Kherif, F., Boddaert, N., Andrade, A., Papadopoulos-Orfanos, D., Poline, J.B., Bloch, I., Zilbovicius, M., Sonigo, P., Brunelle, F., Régis, J.: A Primal Sketch of the Cortex Mean Curvature: a Morphogenesis Based Approach to Study the Variability of the Folding Patterns. IEEE Trans. TMI 22(6), 754–765 (2003)Google Scholar
  12. 12.
    Lisle, R.J., Fernández Martínez, J.L., Bobillo-Ares, N., Menéndez, O., Aller, J., Bastida, F.: FOLD PROFILER: A MATLAB—based program for fold shape classification. Computers & Geosciences 32, 102–108 (2006)CrossRefGoogle Scholar
  13. 13.
    Li, G., Guo, L., Nie, J., Liu, T.: Automatic cortical sulcal parcellation based on surface principal direction flow field tracking. NeuroImage 46(4), 923–937 (2009)CrossRefGoogle Scholar
  14. 14.
    Besl, P.J., Jain, R.C.: Segmentation Through Variable-Order Surface Fitting. IEEE Trans. PAMI 10(2), 167–192 (1988)Google Scholar
  15. 15.
    Liu, T., Nie, J., Tarokh, A., Guo, L., Wong, S.T.: Reconstruction of central cortical surface from brain MRI images: method and application. Neuroimage 40(3), 991–1002 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tuo Zhang
    • 1
  • Lei Guo
    • 1
  • Gang Li
    • 1
  • Jingxin Nie
    • 1
  • Tianming Liu
    • 2
  1. 1.School of AutomationNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Department of Computer Science and Bioimaging Research CenterThe University of GeorgiaAthensUSA

Personalised recommendations