Using Frankenstein’s Creature Paradigm to Build a Patient Specific Atlas

  • Olivier Commowick
  • Simon K. Warfield
  • Grégoire Malandain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)


Conformal radiotherapy planning needs accurate delineations of the critical structures. Atlas-based segmentation has been shown to be very efficient to delineate brain structures. It would therefore be very interesting to develop an atlas for the head and neck region where 7 % of the cancers arise. However, the construction of an atlas in this region is very difficult due to the high variability of the anatomies. This can generate segmentation errors and over-segmented structures in the atlas. To overcome this drawback, we present an alternative method to build a template locally adapted to the patient’s anatomy. This is done first by selecting in a database the images that are the most similar to the patient on predefined regions of interest, using on a distance between transformations. The first major contribution is that we do not compute every patient-to-image registration to find the most similar image, but only the registration of the patient towards an average image. This method is therefore computationally very efficient. The second major contribution is a novel method to use the selected images and the predefined regions to build a “Frankenstein’s creature” for segmentation. We present a qualitative and quantitative comparison between the proposed method and a classical atlas-based segmentation method. This evaluation is performed on a subset of 58 patients among a database of 105 head and neck CT images and shows a great improvement of the specificity of the results.


Similar Image Manual Segmentation Label Fusion Atlas Construction Conformal Radiotherapy Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bondiau, P., Malandain, G., Chanalet, S., Marcy, P., Habrand, J., Fauchon, F., Paquis, P., Courdi, A., Commowick, O., Rutten, I., Ayache, N.: Atlas-based automatic segmentation of MR images: validation study on the brainstem in radiotherapy context. Int. J. Radiat. Oncol. Biol. Phys. 61(1), 289–298 (2005)Google Scholar
  2. 2.
    Poon, I., Fischbein, N., Lee, N., Akazawa, P., Xia, P., Quivey, J., Phillips, T.: A population-based atlas and clinical target volume for the head and neck lymph nodes. Int. J. Radiat. Oncol. Biol. Phys. 59(5), 1301–1311 (2004)Google Scholar
  3. 3.
    Zhang, T., Chi, Y., Meldolesi, E., Yan, D.: Automatic delineation of on-line head and neck computed tomography images: Toward on-line adaptive radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 68(2), 522–530 (2007)Google Scholar
  4. 4.
    Guimond, A., Meunier, J., Thirion, J.: Average brain models: A convergence study. Computer Vision and Image Understanding 77(2), 192–210 (2000)CrossRefGoogle Scholar
  5. 5.
    Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23(Suppl. 1) (2004)Google Scholar
  6. 6.
    Commowick, O., Grégoire, V., Malandain, G.: Atlas-based delineation of lymph node levels in head and neck computed tomography images. Radiotherapy Oncology 87(2), 281–289 (2008)CrossRefGoogle Scholar
  7. 7.
    Grégoire, V., Levendag, P., Ang, K.K., Bernier, J., Braaksma, M., Budach, V., Chao, C., Coche, E., Cooper, J.S., Cosnard, G., Eisbruch, A., El-Sayed, S., Emami, B., Grau, C., Hamoir, M., Lee, N., Maingon, P., Muller, K., Reychler, H.: CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiotherapy Oncology 69(3), 227–236 (2003)CrossRefGoogle Scholar
  8. 8.
    Blezek, D.J., Miller, J.V.: Atlas stratification. MedIA 11(5), 443–457 (2007)Google Scholar
  9. 9.
    Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Classifier selection strategies for label fusion using large atlas databases. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 523–531. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Shelley, M.: Frankenstein. Lackington, Hughes, Harding, Mavor and Jones (1818)Google Scholar
  11. 11.
    Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Pitiot, A., Bardinet, E., Thompson, P.M., Malandain, G.: Piecewise affine registration of biological images for volume reconstruction. MedIA 10(3), 465–483 (2006)Google Scholar
  13. 13.
    Arsigny, V.: Processing Data in Lie Groups: An Algebraic Approach. Application to Non-Linear Registration and Diffusion Tensor MRI. PhD, Polytechnique (2006)Google Scholar
  14. 14.
    Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE TMI 23(7), 903–921 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Olivier Commowick
    • 1
  • Simon K. Warfield
    • 1
  • Grégoire Malandain
    • 2
  1. 1.CRL, Children’s Hospital Boston - Harvard Medical School 
  2. 2.INRIA Sophia Antipolis - Asclepios TeamFrance

Personalised recommendations