Advertisement

3D Prostate Segmentation in Ultrasound Images Based on Tapered and Deformed Ellipsoids

  • Seyedeh Sara Mahdavi
  • William J. Morris
  • Ingrid Spadinger
  • Nick Chng
  • Orcun Goksel
  • Septimiu E. Salcudean
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)

Abstract

Prostate segmentation from trans-rectal transverse B-mode ultrasound images is required for radiation treatment of prostate cancer. Manual segmentation is a time-consuming task, the results of which are dependent on image quality and physicians’ experience. This paper introduces a semi-automatic 3D method based on super-ellipsoidal shapes. It produces a 3D segmentation in less than 15 seconds using a warped, tapered ellipsoid fit to the prostate. A study of patient images shows good performance and repeatability. This method is currently in clinical use at the Vancouver Cancer Center where it has become the standard segmentation procedure for low dose-rate brachytherapy treatment.

Keywords

Ultrasound Image Manual Segmentation Volume Error Versus Diff Prostate Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006)CrossRefGoogle Scholar
  2. 2.
    Pathak, S.D., Haynor, D.R., Kim, Y.: Edge-guided boundary delineation in prostate ultrasound images. IEEE Trans. Med. Imaging 19(12), 1211–1219 (2000)CrossRefGoogle Scholar
  3. 3.
    Boukerroui, D., Baskurt, A., Noble, J., Basset, O.: Segmentation of ultrasound images–multiresolution 2D and 3D algorithm based on global and local statistics. Pattern Recognition Letters 24(4-5), 779–790 (2003)CrossRefGoogle Scholar
  4. 4.
    Zaim, A.: An edge-based approach for segmentation of prostate ultrasound images using phase symmetry. In: ISCCSP 2008, pp. 10–13 (2008)Google Scholar
  5. 5.
    Nascimento, J.C., Marques, J.S.: Robust shape tracking with multiple models in ultrasound images. IEEE Trans. Image Process 17(3), 392–406 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Huang, X., Metaxas, D.N.: Metamorphs: deformable shape and appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1444–1459 (2008)CrossRefGoogle Scholar
  7. 7.
    Thevenaz, P., Unser, M.: Snakuscules. IEEE Trans. Image Process 17(4), 585–593 (2008)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Nanayakkara, N.D., Samarabandu, J., Fenster, A.: Prostate segmentation by feature enhancement using domain knowledge and adaptive region based operations. Phys. Med. Biol. 51(7), 1831–1848 (2006)CrossRefGoogle Scholar
  9. 9.
    Hodge, A.C., Fenster, A., Downey, D.B., Ladak, H.M.: Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D. Comput. Methods Programs Biomed. 84(2-3), 99–113 (2006)CrossRefGoogle Scholar
  10. 10.
    Kachouie, N.N., Fieguth, P., Rahnamayan, S.: An elliptical level set method for automatic TRUS prostate image segmentation. In: Proc. IEEE International Symposium on Signal Processing and Information Technology, pp. 191–196 (2006)Google Scholar
  11. 11.
    Penna, M.A., Dines, K.A., Seip, R., Carlson, R.F., Sanghvi, N.T.: Modeling prostate anatomy from multiple view TRUS images for image-guided HIFU therapy. IEEE Trans. Ultrason Ferroelectr. Freq. Control 54(1), 52–69 (2007)CrossRefGoogle Scholar
  12. 12.
    Gong, L., Pathak, S.D., Haynor, D.R., Cho, P.S., Kim, Y.: Parametric shape modeling using deformable superellipses for prostate segmentation. IEEE Trans. Med. Imaging 23(3), 340–349 (2004)CrossRefGoogle Scholar
  13. 13.
    Badiei, S., Salcudean, S.E., Varah, J., Morris, W.J.: Prostate segmentation in 2D ultrasound images using image warping and ellipse fitting. Med. Image Comput. Comput. Assist. Interv. Int. Conf. 9(Pt 2), 17–24 (2006)Google Scholar
  14. 14.
    Mahdavi, S., Salcudean, S.E.: 3D prostate segmentation based on ellipsoid fitting, image tapering and warping. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 1, pp. 2988–2991 (2008)Google Scholar
  15. 15.
    Zhan, Y., Shen, D.: Deformable segmentation of 3-D ultrasound prostate images using statistical texture matching method. IEEE Trans. Med. Imaging 25(3), 256–272 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Tutar, I.B., Pathak, S.D., Gong, L., Cho, P.S., Wallner, K., Kim, Y.: Semiautomatic 3-D prostate segmentation from TRUS images using spherical harmonics. IEEE Trans. Med. Imaging 25(12), 1645–1654 (2006)CrossRefGoogle Scholar
  17. 17.
    Abolmaesumi, P., Sirouspour, M.R.: An interacting multiple model probabilistic data association filter for cavity boundary extraction from ultrasound images. IEEE Trans. Med. Imaging 23(6), 772–784 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Seyedeh Sara Mahdavi
    • 1
  • William J. Morris
    • 2
  • Ingrid Spadinger
    • 2
  • Nick Chng
    • 2
  • Orcun Goksel
    • 1
  • Septimiu E. Salcudean
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Vancouver Cancer CenterBritish Columbia Cancer AgencyVancouverCanada

Personalised recommendations