Left Ventricle Segmentation Using Diffusion Wavelets and Boosting

  • Salma Essafi
  • Georg Langs
  • Nikos Paragios
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5762)

Abstract

We propose a method for the segmentation of medical images based on a novel parameterization of prior shape knowledge and a search scheme based on classifying local appearance. The method uses diffusion wavelets to capture arbitrary and continuous interdependencies in the training data and uses them for an efficient shape model. The lack of classic visual consistency in complex medical imaging data, is tackled by a manifold learning approach handling optimal high-dimensional local features by Gentle Boosting. Appearance saliency is encoded in the model and segmentation is performed through the extraction and classification of the corresponding features in a new data set, as well as a diffusion wavelet based shape model constraint. Our framework supports hierarchies both in the model and the search space, can encode complex geometric and photometric dependencies of the structure of interest, and can deal with arbitrary topologies. Promising results are reported for heart CT data sets, proving the impact of the soft parameterization, and the efficiency of our approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jolly, M.: Automatic segmentation of the left ventricle in cardiac MR and CT images. IJCV 70(2), 151–163 (2006)CrossRefGoogle Scholar
  2. 2.
    Paragios, N.: A Variational Approach for the Segmentation of the Left Ventricle in Cardiac Image Analysis. International Journal of Computer Vision 50(3), 345–362 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Davatzikos, C., Tao, X., Dinggang, S.: Hierarchical active shape models, using the wavelet transform. IEEE Transactions on Medical Imaging 22, 414–423 (2003)CrossRefGoogle Scholar
  4. 4.
    Nain, D., Haker, S., Bobick, A., Tannenbaum, A.: Multiscale 3-d shape representation and segmentation using spherical wavelets. IEEE Trans. Med. Imaging 26(4), 598–618 (2007)CrossRefGoogle Scholar
  5. 5.
    Essafi, S., Langs, G., Deux, J.F., Rahmouni, A., Bassez, G., Paragios, N.: Wavelet-driven knowledge-based MRI calf segmentation. In: Proceedings of ISBI (2009)Google Scholar
  6. 6.
    Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmon. Anal. 21, 53–94 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Essafi, S., Langs, G., Paragios, N.: Hierarchical 3d diffusion wavelets shape priors. In: IEEE International Conference in Computer Vision, ICCV 2009 (2009)Google Scholar
  9. 9.
    Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. Annals of statistics, 337–374 (2000)Google Scholar
  10. 10.
    Scott, I.M., Cootes, T.F., Taylor, C.J.: Improving appearance model matching using local image structure. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 258–269. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Qian, Z., Metaxas, D.N., Axel, L.: A learning framework for the automatic and accurate segmentation of cardiac tagged MRI images. In: CVBIA, pp. 93–102 (2005)Google Scholar
  12. 12.
    Meyer, Y.: Wavelets - Algorithms and applications. Applied Mathematics (1993)Google Scholar
  13. 13.
    Rieger, B., Timmermans, F.J., van Vliet, L.J., Verbeek, P.W.: On curvature estimation of iso surfaces in 3d gray-value images and the computation of shape descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8), 1088–1094 (2004)CrossRefGoogle Scholar
  14. 14.
    Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision (2001)Google Scholar
  15. 15.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Computer Vision and Image Understanding 61, 38–59 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Salma Essafi
    • 1
    • 2
  • Georg Langs
    • 3
  • Nikos Paragios
    • 1
    • 2
  1. 1.Laboratoire de Mathématiques Appliquées aux SystèmesFrance
  2. 2.GALEN Group, INRIA Saclay-Ile de FranceOrsayFrance
  3. 3.Computational Image Analysis and Radiology Lab, Department of RadiologyMedical University of ViennaAustria

Personalised recommendations