A Computer Model of Soft Tissue Interaction with a Surgical Aspirator

  • Vincent Mora
  • Di Jiang
  • Rupert Brooks
  • Sébastien Delorme
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5761)


Surgical aspirators are one of the most frequently used neurosurgical tools. Effective training on a neurosurgery simulator requires a visually and haptically realistic rendering of surgical aspiration. However, there is little published data on mechanical interaction between soft biological tissues and surgical aspirators. In this study an experimental setup for measuring tissue response is described and results on calf brain and a range of phantom materials are presented. Local graphical and haptic models are proposed. They are simple enough for real-time application, and closely match the observed tissue response. Tissue resection (cutting) with suction is simulated using a volume sculpting approach. A simulation of suction is presented as a demonstration of the effectiveness of the approach.


Virtual Reality Surface Mesh Haptic Device Suction Tube Soft Biological Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vuskovic, V., Kauer, M., Szekely, G., Reidy, M.: Realistic force feedback for virtual reality based diagnostic surgery simulators. In: Proceedings of the ICRA (2000)Google Scholar
  2. 2.
    Spicer, M.A., Apuzzo, M.L.: Virtual reality surgery: neurosurgery and the contemporary landscape. Neurosurgery 52(3), 489–498 (2003)CrossRefGoogle Scholar
  3. 3.
    Rosenthal, R., et al.: The future of patient safety: surgical trainees accept virtual reality as a new training tool. Patient Safety in Surgery 2 (2008)Google Scholar
  4. 4.
    Mauro, A.D., Raczkowsky, J., Wirtz, R., Wörn, H.: Development of a microscope embedded training system for neurosurgery. Biomedical Simulation, 209–214 (2008)Google Scholar
  5. 5.
    Yasargil, M.G.: Microneurosurgery: microsurgery of CNS tumors. Thieme (1996)Google Scholar
  6. 6.
    Cuatico, W.: Neurosurgical suction tips. Acta Neurochirurgica 46, 303–306 (1979)CrossRefGoogle Scholar
  7. 7.
    Vällfors, B.: Neurosurgical suction systems, an experimental study. Thesis, Göteborg, Sweden (1976)Google Scholar
  8. 8.
    Vällfors, B.: Efficient atraumatic liquid suction by means of slit suction tubes combined with a pressure control unit. Neurosurgical Review 7, 179–183 (1984)CrossRefGoogle Scholar
  9. 9.
    Maxwell, R.E., Chou, S.N.: Convexity meningiomas and general principles of meningioma surgery. In: Operative Neurosurgical Techniques: Indications and Methods, pp. 491–501. Grune and Stratton, New York (1982)Google Scholar
  10. 10.
    Papadopoulos, S.M., McGillicuddy, J.E.: A simple device for controlling suction force in neurosurgical operations. Neurosurgery 25, 662–663 (1989)CrossRefGoogle Scholar
  11. 11.
    Johnson, J.P., Becker, D.P.: A continuous microneurosurgical irrigation and suction system: technical note. Neurosurgery 39, 409–411 (1996)CrossRefGoogle Scholar
  12. 12.
    Shalit, M.N.: A simple method for the control of suction power during neurosurgery. Acta Neurochirurgica 64, 235–236 (1982)CrossRefGoogle Scholar
  13. 13.
    Lefranc, F., Brotchi, J.: Performance of a new type of suction tip attachment during intramedullary tumor dissection: technical note. Neurosurgery 61 (2007)Google Scholar
  14. 14.
    Aoki, T., Ohashi, T., Matsumoto, T., Sato, M.: The pipette aspiration applied to the local stiffness measurement of soft tissues. Annals of Biomedical Engineering 25, 581–587 (1997)CrossRefGoogle Scholar
  15. 15.
    Vällfors, B.: Suction in neurosurgery. Acta Neurochirurgica 55, 35–42 (1980)CrossRefGoogle Scholar
  16. 16.
    Mazza, E., Grau, P., Hollenstein, M., Bajka, M.: Constitutive modeling of human liver based on in vivo measurements. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 726–733. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Schiavone, P., Boudou, T., Promayon, E., Perrier, P., Payan, Y.: A light sterilizable pipette device for the in vivo estimation of human soft tissues constitutive laws. In: Proceedings of the 30th EMBC, pp. 4298–4301 (2008)Google Scholar
  18. 18.
    Berkley, J., Weghorst, S., Gladstone, H., Raugi, G., Berg, D., Ganter, M.: Fast finite element modeling for surgical simulation. In: Medicine Meets Virtual Reality, pp. 55–61. IOS Press, Amsterdam (1999)Google Scholar
  19. 19.
    Taylor, Z.A., Cheng, M., Ourselin, S.: High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. Transactions on Medical Imaging 27(5), 650–662 (2008)CrossRefGoogle Scholar
  20. 20.
    Miller, K., Joldes, G., Lance, D., Wittek, A.: Total lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Communications in Numerical Methods in Engineering 23, 121–134 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Galyean, T.A., Hughes, J.F.: Sculpting: an interactive volumetric modeling technique. Computer Graphics 25(4), 267–274 (1991)CrossRefGoogle Scholar
  22. 22.
    Pflesser, B., Petersik, A., Tiede, U., Hohne, K.H., Leuwer, R.: Volume cutting for virtual petrous bone surgery. Computer Aided Surgery 7(2), 74–83 (2002)CrossRefGoogle Scholar
  23. 23.
    Newman, T.S., Yi, H.: A survey of the marching cubes algorithm. Computers and Graphics 30, 854–879 (2006)CrossRefGoogle Scholar
  24. 24.
    Lorensen, W., Cline, H.: Marching cubes: a high resolution 3d surface construction algorithm. Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  25. 25.
    Fallenstein, G.T., Hulce, V.D., Melvin, J.W.: Dynamic mechanical properties of human brain tissue. Journal of Biomechanics 2(3), 217–226 (1969)CrossRefGoogle Scholar
  26. 26.
    Lippert, S., Grimm, M.: Estimating the material properties of brain tissue at impact frequencies: A curve-fitting solution. In: Summer Bioengineering Conference, Key Biscayne, Florida (2003)Google Scholar

Copyright information

© NRC Canada 2009

Authors and Affiliations

  • Vincent Mora
    • 1
  • Di Jiang
    • 1
  • Rupert Brooks
    • 1
  • Sébastien Delorme
    • 1
  1. 1.Industrial Materials InstituteNational Research CouncilCanada

Personalised recommendations