Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets

  • Stanley Durrleman
  • Xavier Pennec
  • Alain Trouvé
  • Guido Gerig
  • Nicholas Ayache
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5761)


We propose a new methodology to analyze the anatomical variability of a set of longitudinal data (population scanned at several ages). This method accounts not only for the usual 3D anatomical variability (geometry of structures), but also for possible changes in the dynamics of evolution of the structures. It does not require that subjects are scanned the same number of times or at the same ages. First a regression model infers a continuous evolution of shapes from a set of observations of the same subject. Second, spatiotemporal registrations deform jointly (1) the geometry of the evolving structure via 3D deformations and (2) the dynamics of evolution via time change functions. Third, we infer from a population a prototype scenario of evolution and its 4D variability. Our method is used to analyze the morphological evolution of 2D profiles of hominids skulls and to analyze brain growth from amygdala of autistics, developmental delay and control children.


Continuous Evolution Medical Image Analysis Anatomical Variability Longitudinal Dataset Matching Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Supplementary material (3,636 KB)


  1. 1.
    Qiu, A., Younes, L., Miller, M., Csernansky, J.: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the alzheimer’s type. NeuroImage 40, 68–76 (2008)CrossRefGoogle Scholar
  2. 2.
    Gorczowski, K., Styner, M., Jeong, J.Y., Marron, J.S., Piven, J., Hazlett, H.C., Pizer, S.M., Gerig, G.: Statistical shape analysis of multi-object complexes. Transactions on Pattern Analysis and Machine Intelligence (to appear, 2009)Google Scholar
  3. 3.
    Khan, A., Beg, M.: Representation of time-varying shapes in the large deformation diffeomorphic framework. In: Proc. of ISBI 2008, pp. 1521–1524 (2008)Google Scholar
  4. 4.
    Davis, B., Fletcher, P., Bullitt, E., Joshi, S.: Population shape regression from random design data. In: Proc. of ICCV 2007, pp. 1–7 (2007)Google Scholar
  5. 5.
    Chandrashekara, R., Rao, A., Sanchez-Ortiz, G.I., Mohiaddin, R.H., Rueckert, D.: Construction of a statistical model for cardiac motion analysis using nonrigid image registration. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 599–610. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Peyrat, J.M., Delingette, H., Sermesant, M., Pennec, X., Xu, C., Ayache, N.: Registration of 4D Time-Series of Cardiac Images with Multichannel Diffeomorphic Demons. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 972–979. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Declerck, J., Feldman, J., Ayache, N.: Definition of a 4D continuous planispheric transformation for the tracking and the analysis of LV motion. Medical Image Analysis 4(1), 1–17 (1998)Google Scholar
  8. 8.
    Perperidis, D., Mohiaddin, R.H., Rueckert, D.: Spatio-temporal free-form registration of cardiac MRI sequences. Medical Image Analysis 9(5), 441–456 (2005)CrossRefGoogle Scholar
  9. 9.
    Vaillant, M., Miller, M., Younes, L., Trouvé, A.: Statistics on diffeomorphisms via tangent space representations. NeuroImage 23, 161–169 (2004)CrossRefGoogle Scholar
  10. 10.
    Durrleman, S., Pennec, X., Trouvé, A., Thompson, P., Ayache, N.: Inferring brain variability from diffeomorphic deformations of currents: an integrative approach. Medical Image Analysis 12(5), 626–637 (2008)CrossRefGoogle Scholar
  11. 11.
    Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of curves and surfaces based on currents. Medical Image Analysis (to appear, 2009)Google Scholar
  12. 12.
    Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. Research Report 6952, INRIA (June 2009)Google Scholar
  13. 13.
    Miller, M.I., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomed. Eng. 4, 375–405 (2002)CrossRefGoogle Scholar
  14. 14.
    Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Hazlett, H., Poe, M., Gerig, G., Smith, R., Provenzale, J., Ross, A., Gilmore, J., Piven, J.: Magnetic resonance imaging and head circumference study of brain size in autism. The Archives of General Psychiatry 62, 1366–1376 (2005)CrossRefGoogle Scholar
  16. 16.
    Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Sparse approximation of currents for statistics on curves and surfaces. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 390–398. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stanley Durrleman
    • 1
    • 2
  • Xavier Pennec
    • 1
  • Alain Trouvé
    • 2
  • Guido Gerig
    • 3
  • Nicholas Ayache
    • 1
  1. 1.INRIA - Asclepios Team-ProjectSophia AntipolisFrance
  2. 2.Centre de Mathématiques et Leurs Applications (CMLA), ENS-CachanFrance
  3. 3.Scientific Computing and Imaging (SCI) InstituteUniversity of UtahUSA

Personalised recommendations