Single Fiber Optical Coherence Tomography Microsurgical Instruments for Computer and Robot-Assisted Retinal Surgery

  • Marcin Balicki
  • Jae-Ho Han
  • Iulian Iordachita
  • Peter Gehlbach
  • James Handa
  • Russell Taylor
  • Jin Kang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5761)


We present initial prototype and preliminary experimental demonstration of a new class of microsurgical instruments that incorporate common path optical coherence tomography (CP-OCT) capabilities. These instruments may be used freehand or with robotic assistance. We describe a prototype 25 gauge microsurgical pick incorporating a single 125 (m diameter optical fiber interfaced to a Fourier Domain CP-OCT system developed in our laboratory. For initial experimentation, we have interfaced this instrument with an extremely precise, cooperatively controlled robot. We describe the tool, system design, and demonstration of three control methods on simple phantom models: 1) enforce ment of safety constraints preventing unintentional collisions of the instrument with the retinal surface; 2) the ability to scan the probe across a surface while maintaining a constant distance offset; and 3) the ability to place the pick over a subsurface target identified in a scan and then penetrate the surface to hit the target.


Optical Coherence Tomography Macular Hole Optical Coherence Tomography Image Optical Coherence Tomography System Safety Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Supplementary material (2,668 KB)

Supplementary material (2,949 KB)

Supplementary material (2,324 KB)

Supplementary material (3,566 KB)

978-3-642-04268-3_14_MOESM5_ESM.jpg (39 kb)
Supplementary material (40 KB)
978-3-642-04268-3_14_MOESM6_ESM.jpg (62 kb)
Supplementary material (62 KB)
978-3-642-04268-3_14_MOESM7_ESM.jpg (54 kb)
Supplementary material (55 KB)
978-3-642-04268-3_14_MOESM8_ESM.jpg (46 kb)
Supplementary material (47 KB)
978-3-642-04268-3_14_MOESM9_ESM.jpg (37 kb)
Supplementary material (38 KB)
978-3-642-04268-3_14_MOESM10_ESM.jpg (47 kb)
Supplementary material (47 KB)
978-3-642-04268-3_14_MOESM11_ESM.jpg (48 kb)
Supplementary material (49 KB)
978-3-642-04268-3_14_MOESM12_ESM.jpg (53 kb)
Supplementary material (54 KB)
978-3-642-04268-3_14_MOESM13_ESM.jpg (58 kb)
Supplementary material (59 KB)
978-3-642-04268-3_14_MOESM14_ESM.jpg (63 kb)
Supplementary material (64 KB)


  1. 1.
    Sjaarda, R.N., Michels, R.G.: Macular pucker. In: Ryan, S.J. (ed.) Retina, 2nd edn., Mosby, St. Louis, vol. 3, pp. 2301–2312 (1994)Google Scholar
  2. 2.
    Keisuke, M., Gehlbach, P.L., SanoA., D.T., Yoneya, S.: Comparison of Epiretinal Membranes of Differing Pathogenesis Using Optical Coherence Tomography. Retina 24, 57–62 (2004)CrossRefGoogle Scholar
  3. 3.
    Fujimoto, J.G., Pitris, C., Boppart, S.A., Brezinski, M.E.: Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2(1-2), 9–25 (2000)CrossRefGoogle Scholar
  4. 4.
    Herrmann, J.M., Boppart, S.A., Bouma, B.E., Tearney, G.J., Pitris, C., Brezinski, M.E., Fujimoto, J.G.: Real time imaging of laser intervention with optical coherence tomography. In: Biomedical Optical Spectroscopy and Diagnostics / Therapeutic Laser Applications. OSA Trends in Optics and Photonics Series, paper TSuD2, vol. 22 (1998)Google Scholar
  5. 5.
    Boppart, S.A., Nguyen, F.T., Zysk, A.M., Chaney, E.J., Kotynek, J.G., Oliphant, U.J., Bellafiore, F.J., Rowland, K.M., Johnson, P.A.: Coherent optical imaging and guided interventions in breast cancer: translating technology into clinical applications. In: Proc. SPIE, vol. 6991, 699102 (2008)Google Scholar
  6. 6.
    Han, S., Sarunic, M.V., Wu, J., Humayun, M., Yang, C.: Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection. J. Biomed. Opt. 13, 20505 (2008)CrossRefGoogle Scholar
  7. 7.
    Fleming, I.N., Voros, S., Vagvolgyi, B., Pezzementi, Z., Handa, J., Taylor, R., Hager, G.D.: Intraoperative Visualization of Anatomical Targets in Retinal Surgery. In: Fleming, I.N., Voros, S., Vagvolgyi, B., Pezzementi, Z., Handa, J., Taylor, R., Hager, G.D. (eds.) IEEE Workshop on Applications of Computer Vision, 2008. WAC 2008, January 7-9, 2008, pp. 1–6 (2008)Google Scholar
  8. 8.
    Liu, X., Li, X., Kim, D.-H., Ilev, I., Kang, J.U.: Fiber Optic Fourier-domain Common-path OCT. C. Optics Letters 06(12), 899–903 (2008)CrossRefGoogle Scholar
  9. 9.
    Mitchell, B., Koo, J., Iordachita, I., Kazanzides, P., Kapoor, A., Handa, J., Hager, G., Taylor, R.: Development and Application of a New Steady-Hand Manipulator for Retinal Surgery. IEEE ICRA, 623–629 (2007)Google Scholar
  10. 10.
    Riviere, W.A., Khosla, P.: Toward active tremor canceling in handheld microsurgical instruments. IEEE Trans. Rob. Autom. 19, 793–800 (2003)CrossRefGoogle Scholar
  11. 11.
    Kapoor, A., Deguet, A., Kazanzides, P.: Software components and frameworks for medical robot control. In: IEEE ICRA, pp. 3813–3818 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marcin Balicki
    • 1
  • Jae-Ho Han
    • 1
  • Iulian Iordachita
    • 1
  • Peter Gehlbach
    • 2
  • James Handa
    • 2
  • Russell Taylor
    • 1
  • Jin Kang
    • 1
  1. 1.ERC for Computer Integrated SurgeryJohns Hopkins UniversityUSA
  2. 2.Wilmer Eye InstituteJohns Hopkins MedicalBaltimoreUSA

Personalised recommendations