Advertisement

Iterative Co-linearity Filtering and Parameterization of Fiber Tracts in the Entire Cingulum

  • Marius de Groot
  • Meike W. Vernooij
  • Stefan Klein
  • Alexander Leemans
  • Renske de Boer
  • Aad van der Lugt
  • Monique M. B. Breteler
  • Wiro J. Niessen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5761)

Abstract

We present a method for the fully automated extraction of the cingulum using diffusion tensor imaging (DTI) data. We perform whole-brain tractography and initialize tract selection in the cingulum with a registered DTI atlas. Tracts are parameterized from which tract co-linearity is derived. The tract set, filtered on the basis of co-linearity with the cingulum shape, yields an improved segmentation of the cingulum and is subsequently optimized in an iterative fashion to further improve the tract selection. We evaluate the method using a large DTI database of 500 subjects from the general population and show robust extraction of tracts in the entire cingulate bundle in both hemispheres. We demonstrate the use of the extracted fiber-tracts to compare left and right cingulate bundles. Our asymmetry analysis shows a higher fractional anisotropy in the left anterior part of the cingulum compared to the right side, and the opposite effect in the posterior part.

Keywords

Fractional Anisotropy Diffusion Tensor Imaging Tract Selection Diffusion Tensor Magnetic Resonance Imaging High Fractional Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical journal 66, 259–267 (1994)CrossRefGoogle Scholar
  2. 2.
    Basser, P.J., Jones, D.K.: Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR in Biomedicine 15, 456–467 (2002)CrossRefGoogle Scholar
  3. 3.
    Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31, 1487–1505 (2006)CrossRefGoogle Scholar
  4. 4.
    Kindlmann, G., Tricoche, X., Westin, C.F.: Delineating white matter structure in diffusion tensor MRI with anisotropy creases. Medical image analysis 11, 492–502 (2007)CrossRefGoogle Scholar
  5. 5.
    Melonakos, J., Mohan, V., Niethammer, M., Smith, K., Kubicki, M., Tannenbaum, A.: Finsler Tractography for White Matter Connectivity Analysis of the Cingulum Bundle. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 36–43. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Gong, G., Jiang, T., Zhu, C., Zang, Y., Wang, F., Xie, S., Xiao, J., Guo, X.: Asymmetry analysis of cingulum based on scale-invariant parameterization by diffusion tensor imaging. Human brain mapping 24, 92–98 (2005)CrossRefGoogle Scholar
  7. 7.
    Malykhin, N., Concha, L., Seres, P., Beaulieu, C., Coupland, N.J.: Diffusion tensor imaging tractography and reliability analysis for limbic and paralimbic white matter tracts. Psychiatry research 164, 132–142 (2008)CrossRefGoogle Scholar
  8. 8.
    Nakata, Y., Sato, N., Nemoto, K., Abe, O., Shikakura, S., Arima, K., Furuta, N., Uno, M., Hirai, S., Masutani, Y., Ohtomo, K., Barkovich, A.J., Aoki, S.: Diffusion abnormality in the posterior cingulum and hippocampal volume: correlation with disease progression in Alzheimer’s disease. Magnetic resonance imaging 27, 347–354 (2008)CrossRefGoogle Scholar
  9. 9.
    O’Donnell, L.J., Westin, C.F., Golby, A.J.: Tract-based morphometry for white matter group analysis. NeuroImage 45, 832–844 (2009)CrossRefGoogle Scholar
  10. 10.
    Leemans, A., Jeurissen, B., Sijbers, J., Jones, D.K.: ExploreDTI: a graphical toolbox for processing analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of Intl. Soc. Mag. Reson. Med., Hawaii, USA, p. 3537 (2009)Google Scholar
  11. 11.
    Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., Hua, K., Faria, A.V., Mahmood, A., Woods, R., Toga, A.W., Pike, G.B., Neto, P.R., Evans, A., Zhang, J., Huang, H., Miller, M.I., van Zijl, P., Mazziotta, J.: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 40, 570–582 (2008)CrossRefGoogle Scholar
  12. 12.
    Klein, S., Staring, M., Pluim, J.P.W.: Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. IEEE Trans. Image. Process 16, 2879–2890 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hofman, A., Breteler, M.M., van Duijn, C.M., Krestin, G.P., Pols, H.A., Stricker, B.H., Tiemeier, H., Uitterlinden, A.G., Vingerling, J.R., Witteman, J.C.: The Rotterdam Study: objectives and design update. European journal of epidemiology 22, 819–829 (2007)CrossRefGoogle Scholar
  14. 14.
    Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23 (suppl. 1), S208–S219 (2004)CrossRefGoogle Scholar
  15. 15.
    Nichols, T.E., Holmes, A.P.: Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human brain mapping 15, 1–25 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marius de Groot
    • 1
  • Meike W. Vernooij
    • 2
    • 3
  • Stefan Klein
    • 1
  • Alexander Leemans
    • 4
    • 5
  • Renske de Boer
    • 1
    • 2
  • Aad van der Lugt
    • 3
  • Monique M. B. Breteler
    • 2
  • Wiro J. Niessen
    • 1
    • 6
  1. 1.Biomedical Imaging Group Rotterdam, Departments of Radiology and, Medical Informatics, Erasmus MCRotterdamthe Netherlands
  2. 2.Department of Epidemiology, Erasmus MCRotterdamthe Netherlands
  3. 3.Department of Radiology, Erasmus MCRotterdamthe Netherlands
  4. 4.Image Sciences InstituteUniversity Medical Center Utrechtthe Netherlands
  5. 5.CUBRIC, School of PsychologyCardiff UniversityUnited Kingdom
  6. 6.Imaging Science and Technology, Faculty of Applied SciencesDelft University of Technologythe Netherlands

Personalised recommendations