Constraint-Based Local Search for the Automatic Generation of Architectural Tests

  • Pascal Van Hentenryck
  • Carleton Coffrin
  • Boris Gutkovich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5732)


This paper considers the automatic generation of architectural tests (ATGP), a fundamental problem in processor validation. ATGPs are complex conditional constraint satisfaction problems which typically feature both hard and soft constraints and very large domains (e.g., all memory addresses). Moreover, the goal is to generate a large number of diverse solutions under tight runtime constraints. To improve solution diversity, this paper proposes a novel approach to ATGPs by modeling them as MaxDiverse k Set problems and solving them with constraint-based local search over conditional variables. The paper presents the semantics and implementation of conditional variables in this context and demonstrates the computational benefits of the approach.


Conditional Variable Test Scenario Soft Constraint Probabilistic Constraint Diverse Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: Proceedings of the Eighth National Conference on Artificial Intelligence (1990)Google Scholar
  2. 2.
    Moss, A.: Constraint patterns and search procedures for cp-based random test generation. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 86–103. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar solutions in constraint programming. In: Proceedings of the Twentieth National Conference on Artificial Intelligence (2005)Google Scholar
  4. 4.
    Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press, Cambridge (2005)MATHGoogle Scholar
  5. 5.
    Bin, E., Emek, R., Shurek, G., Ziv, A.: Using a constraint satisfaction formulation and solution techniques for random test program generation. IBM Systems Journal 41(3) (2002)Google Scholar
  6. 6.
    Geller, F., Veksler, M.: Assumption-based pruning in conditional csp. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 241–255. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Sabin, D., Freuder, E.C.: Configuration as composite constraint satisfaction. In: Proceedings of Artificial Intelligence and Manufacturing Research Planning Workshop (1996)Google Scholar
  8. 8.
    Van Hentenryck, P., Michel, L.: Differentiable invariants. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 604–619. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Glover, F., Laguna, M.: Tabu Search. Kluwer, Dordrecht (1997)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pascal Van Hentenryck
    • 1
  • Carleton Coffrin
    • 1
  • Boris Gutkovich
    • 2
  1. 1.Brown UniversityProvidenceUSA
  2. 2.Intel CorporationHaifaIsrael

Personalised recommendations