Conflict Resolution

  • Konstantin Korovin
  • Nestan Tsiskaridze
  • Andrei Voronkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5732)


We introduce a new method for solving systems of linear inequalities over the rationals—the conflict resolution method. The method successively refines an initial assignment with the help of newly derived constraints until either the assignment becomes a solution of the system or a trivially unsatisfiable constraint is derived. We show that this method is correct and terminating. Our experimental results show that conflict resolution outperforms the Fourier-Motzkin method and the Chernikov algorithm, in some cases by orders of magnitude.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrett, C., Cesare Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Barrett, C., Ranise, S., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library, SMT-LIB (2008),
  3. 3.
    Chandru, V.: Variable elimination in linear constraints. Comput. J. 36(5), 463–472 (1993)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chernikov, S.N.: Linejnye Neravenstva. Nauka, Moscow (1968) (in Russian)Google Scholar
  5. 5.
    Duffin, R.J.: On Fourier’s analyse of linear inequality systems. Mathematical Programming Study 1, 71–95 (1974)CrossRefMATHGoogle Scholar
  6. 6.
    Imbert, J., Van Hentenryck, P.: A note on redundant linear constraints. Technical Report CS-92-11, CS Department, Brown University (1992)Google Scholar
  7. 7.
    Jaffar, J., Maher, M.J., Roland, P.S., Yap, R.H.C.: Projecting CLP(\(\mathcal{R}\)) constraints. New Generation Computing 11 (1993)Google Scholar
  8. 8.
    Kohler, D.A.: Projection of Convex Polyhedral Sets. PhD thesis, University of California, Barkaley (1967)Google Scholar
  9. 9.
    Korovin, K., Voronkov, A.: Hard Reality Tool (submitted, 2009),
  10. 10.
    Nieuwenhuis, R., Oliveras, A.: Decision Procedures for SAT, SAT Modulo Theories and Beyond. The BarcelogicTools (Invited Paper). In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 23–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, Chichester (1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Konstantin Korovin
    • 1
  • Nestan Tsiskaridze
    • 1
  • Andrei Voronkov
    • 1
  1. 1.The University of ManchesterUK

Personalised recommendations