From Model-Checking to Temporal Logic Constraint Solving

  • François Fages
  • Aurélien Rizk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5732)


In this paper, we show how model-checking can be generalized to temporal logic constraint solving, by considering temporal logic formulae with free variables over some domain \({\mathcal D}\), and by computing a validity domain for the variables rather than a truth value for the formula. This allows us to define a continuous degree of satisfaction for a temporal logic formula in a given structure, opening up the field of model-checking to optimization. We illustrate this approach with reverse-engineering problems coming from systems biology, and provide some performance figures on parameter optimization problems with respect to temporal logic specifications.


Model Check Temporal Logic Satisfaction Degree Kripke Structure Computation Tree Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. Logic in Computer Science, pp. 313–321 (1996)Google Scholar
  2. 2.
    Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs using fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  3. 3.
    Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)CrossRefGoogle Scholar
  4. 4.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schneider, D.: Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in Escherichia coli. Bioinformatics 21(suppl. 1), 19–28 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Batt, G., Yordanov, B., Weiss, R., Belta, C.: Robustness analysis and tuning of synthetic gene networks. Bioinformatics 23(18), 2415–2422 (2007)CrossRefGoogle Scholar
  7. 7.
    Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: A fruitful application of formal methods to biological regulatory networks: Extending thomas’ asynchronous logical approach with temporal logic. Journal of Theoretical Biology 229(3), 339–347 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using the continuous time markow chains. In: Plotkin, G. (ed.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006); CMSB 2005 Special IssueCrossRefGoogle Scholar
  9. 9.
    Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006); CMSB 2005 Special Issue CrossRefGoogle Scholar
  10. 10.
    Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Chen, K.C., Csikász-Nagy, A., Györffy, B., Val, J., Novàk, B., Tyson, J.J.: Kinetic analysis of a molecular model of the budding yeast cell cycle. Molecular Biology of the Cell 11, 396–391 (2000)Google Scholar
  13. 13.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  14. 14.
    Delzanno, G., Podelski, A.: Constraint-based deductive model checking. STTT 3(3), 250–270 (2001)zbMATHGoogle Scholar
  15. 15.
    Egerstedt, M., Mishra, B.: (2008)Google Scholar
  16. 16.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Kemal Sönmez, M.: Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the seventh Pacific Symposium on Biocomputing, January 2002, pp. 400–412 (2002) Google Scholar
  17. 17.
    Fages, F., Rizk, A.: On temporal logic constraint solving for the analysis of numerical data time series. Theoretical Computer Science 408(1), 55–65 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fages, F., Soliman, S.: From reaction models to influence graphs and back: a theorem. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 90–102. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Fages, F., Soliman, S., Rizk, A.: BIOCHAM v2.8 user’s manual. In: INRIA (2009),
  20. 20.
    Halbwachs, N., Proy, Y.e., Roumanoff, P.: Verification of real-time systems using linear relation analysis. In: Formal Methods in System Design, pp. 157–185 (1997)Google Scholar
  21. 21.
    Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)CrossRefGoogle Scholar
  22. 22.
    Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HYTECH: A model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  24. 24.
    Janssen, M., Van Hentenryck, P., Deville, Y.: A constraint satisfaction approach for enclosing solutions to parametric ordinary differential equations. SIAM Journal on Numerical Analysis 40(5) (2002)Google Scholar
  25. 25.
    Kitano, H.: Towards a theory of biological robustness. Molecular Systems Biology 3, 137 (2007)CrossRefGoogle Scholar
  26. 26.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. Journal on Software Tools for Technology Transfer 1, 134–152 (1997)CrossRefzbMATHGoogle Scholar
  27. 27.
    Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. PNAS 97(11), 5818–5823 (2000)CrossRefGoogle Scholar
  28. 28.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  29. 29.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)Google Scholar
  30. 30.
    Podelski, A.: Model checking as constraint solving. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 22–37. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  31. 31.
    Qiao, L., Nachbar, R.B., Kevrekidis, I.G., Shvartsman, S.Y.: Bistability and oscillations in the huang-ferrell model of mapk signaling. PLoS Computational Biology 3(9), 1819–1826 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfaction of temporal logic formulae with applications to systems biology. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness analysis with applications to synthetic gene networks. BioInformatics 25(12), 169–178 (2009)CrossRefGoogle Scholar
  34. 34.
    Tevfik, B., Richard, G., William, P.: Symbolic model checking of infinite state systems using presburger arithmetic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 400–411. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  35. 35.
    Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state space. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • François Fages
    • 1
  • Aurélien Rizk
    • 1
  1. 1.EPI Contraintes, INRIA Paris-RocquencourtLe Chesnay CedexFrance

Personalised recommendations