Advertisement

Online Selection of Quorum Systems for RAMBO Reconfiguration

  • Laurent Michel
  • Martijn Moraal
  • Alexander Shvartsman
  • Elaine Sonderegger
  • Pascal Van Hentenryck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5732)

Abstract

Rambo is the Reconfigurable Atomic Memory for Basic Objects, a formally specified algorithm that implements atomic read/write shared memory in dynamic, rapidly changing networking environments. Rambo is particularly apt at dealing with volatile environments such as mobile networks. To maintain availability and consistency, even as hosts join, leave, and fail, Rambo replicates objects and uses reconfigurable quorum systems. As the system dynamically changes, Rambo installs new quorum configurations. This paper addresses the reconfiguration problem with three approaches based on a finite-domain model, an hybrid master-slave decomposition and a parallel composite to find optimal or near-optimal configurations. Current behaviors of Rambo participants are observed, gossiped, and used as predictors for future behaviors, with the goal of finding quorum configurations that minimize read and write operation delays without affecting correctness and fault-tolerance properties of the system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arif, S.F., Merchant, A., Saito, Y., Spence, S., Veitch, A.: Fab: enterprise storage systems on a shoestring. In: Operating Systems, Lihue, HI, May 18-21, pp. 133–138. USENIX Association (2003)Google Scholar
  2. 2.
    Benders, J.F.: Partitioning procedures for solving mixed variables programming problems. Numerische Mathematik 4, 238–252 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Georgiou, C., Musial, P.M., Shvartsman, A.A.: Long-lived rambo: Trading knowledge for communication. Theor. Comput. Sci. 383(1), 59–85 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gilbert, S., Lynch, N.A., Shvartsman, A.A.: RAMBO II: Rapidly reconfigurable atomic memory for dynamic networks. In: DSN, pp. 259–268. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  5. 5.
    Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning. Operations Research 37(6), 865–893 (1989)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lynch, N., Shvartsman, A.: RAMBO: A reconfigurable atomic memory service for dynamic networks. In: Proceedings of the 16th International Symposium on Distributed Computing, pp. 173–190 (2002)Google Scholar
  8. 8.
    Smith, B.M.: Sets of symmetry breaking constraints. In: Proc. of SymCon, vol. 5 (2005)Google Scholar
  9. 9.
    Thomas, R.H.: A majority consensus approach to concurrency control for multiple copy databases. ACM Trans. Database Syst. 4(2), 180–209 (1979)CrossRefGoogle Scholar
  10. 10.
    Van Hentenryck, P., Michel, L.: Control Abstraction for Local Search. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 65–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Laurent Michel
    • 2
  • Martijn Moraal
    • 2
  • Alexander Shvartsman
    • 2
  • Elaine Sonderegger
    • 2
  • Pascal Van Hentenryck
    • 1
  1. 1.Brown UniversityProvidence
  2. 2.University of ConnecticutStorrs

Personalised recommendations