Improving Inference of Transcriptional Regulatory Networks Based on Network Evolutionary Models

  • Xiuwei Zhang
  • Bernard M. E. Moret
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5724)

Abstract

Computational inference of transcriptional regulatory networks remains a challenging problem, in part due to the lack of strong network models. In this paper we present evolutionary approaches to improve the inference of regulatory networks for a family of organisms by developing an evolutionary model for these networks and taking advantage of established phylogenetic relationships among these organisms. In previous work, we used a simple evolutionary model for regulatory networks and provided extensive simulation results showing that phylogenetic information, combined with such a model, could be used to gain significant improvements on the performance of current inference algorithms.

In this paper, we extend the evolutionary model so as to take into account gene duplications and losses, which are viewed as major drivers in the evolution of regulatory networks. We show how to adapt our evolutionary approach to this new model and provide detailed simulation results, which show significant improvement on the reference network inference algorithms. We also provide results on biological data (cis-regulatory modules for 12 species of Drosophila), confirming our simulation results.

References

  1. 1.
    Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Proc. 4th Pacific Symp. on Biocomputing PSB 1999, pp. 17–28. World Scientific, Singapore (1999)Google Scholar
  2. 2.
    Arvestad, L., Berglund, A.-C., Lagergren, J., Sennblad, B.: Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. In: Proc. 8th Conf. Research in Comput. Mol. Bio. RECOMB 2004, pp. 326–335 (2004)Google Scholar
  3. 3.
    Babu, M.M., Luscombe, N.M., Aravind, L., Gerstein, M., Teichmann, S.A.: Structure and evolution of transcriptional regulatory networks. Curr. Opinion in Struct. Bio. 14(3), 283–291 (2004)CrossRefGoogle Scholar
  4. 4.
    Babu, M.M., Teichmann, S.A., Aravind, L.: Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J. Mol. Bio. 358(2), 614–633 (2006)CrossRefGoogle Scholar
  5. 5.
    Barabási, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004)CrossRefPubMedGoogle Scholar
  6. 6.
    Bhan, A., Galas, D.J., Dewey, T.G.: A duplication growth model of gene expression networks. Bioinformatics 18(11), 1486–1493 (2002)CrossRefPubMedGoogle Scholar
  7. 7.
    Bourque, G., Sankoff, D.: Improving gene network inference by comparing expression time-series across species, developmental stages or tissues. J. Bioinform. Comput. Bio. 2(4), 765–783 (2004)CrossRefGoogle Scholar
  8. 8.
    Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations. In: Proc. 4th Pacific Symp. on Biocomputing PSB 1999, pp. 29–40. World Scientific, Singapore (1999)Google Scholar
  9. 9.
    Crombach, A., Hogeweg, P.: Evolution of evolvability in gene regulatory networks. PLoS Comput. Bio. 4(7), e1000112 (2008)CrossRefGoogle Scholar
  10. 10.
    Durand, D., Halldórsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to gene tree reconstruction. J. Comput. Bio. 13(2), 320–335 (2006)CrossRefGoogle Scholar
  11. 11.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Bio. 7(3-4), 601–620 (2000)CrossRefGoogle Scholar
  12. 12.
    Friedman, N., Murphy, K.P., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proc. 14th Conf. on Uncertainty in Art. Intell. UAI 1998, pp. 139–147 (1998)Google Scholar
  13. 13.
    Harbison, C.T., Gordon, D.B., Lee, T.I., et al.: Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hillis, D.M.: Approaches for assessing phylogenetic accuracy. Syst. Bio. 44, 3–16 (1995)CrossRefGoogle Scholar
  15. 15.
    Kanehisa, M., et al.: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–D357 (2006)CrossRefGoogle Scholar
  16. 16.
    Kim, J., He, X., Sinha, S.: Evolution of regulatory sequences in 12 Drosophila species. PLoS Genet. 5(1), e1000330 (2009)CrossRefGoogle Scholar
  17. 17.
    Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinf. 4(3), 228–235 (2003)CrossRefGoogle Scholar
  18. 18.
    Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. In: Proc. 3rd Pacific Symp. on Biocomputing, PSB 1998, pp. 18–29. World Scientific, Singapore (1998)Google Scholar
  19. 19.
    Moret, B.M.E., Warnow, T.: Reconstructing optimal phylogenetic trees: A challenge in experimental algorithmics. In: Fleischer, R., Moret, B.M.E., Schmidt, E.M. (eds.) Experimental Algorithmics. LNCS, vol. 2547, pp. 163–180. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Murphy, K.P.: The Bayes net toolbox for MATLAB. Comput. Sci. Stat. 33, 331–351 (2001)Google Scholar
  21. 21.
    Page, R.D.M., Charleston, M.A.: From gene to organismal phylogeny: Reconciled trees and the gene tree/species tree problem. Mol. Phyl. Evol. 7(2), 231–240 (1997)CrossRefGoogle Scholar
  22. 22.
    Pupko, T., Pe’er, I., Shamir, R., Graur, D.: A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol. Bio. Evol. 17(6), 890–896 (2000)CrossRefGoogle Scholar
  23. 23.
    Roth, C., et al.: Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. J. Exp. Zool. Part B 308B(1), 58–73 (2007)CrossRefGoogle Scholar
  24. 24.
    Stark, A., Kheradpour, P., Roy, S., Kellis, M.: Reliable prediction of regulator targets using 12 Drosophila genomes. Genome Res. 17, 1919–1931 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tanay, A., Regev, A., Shamir, R.: Conservation and evolvability in regulatory networks: The evolution of ribosomal regulation in yeast. Proc. Nat’l Acad. Sci. USA 102(20), 7203–7208 (2005)CrossRefGoogle Scholar
  26. 26.
    Teichmann, S.A., Babu, M.M.: Gene regulatory network growth by duplication. Nature Genetics 36(5), 492–496 (2004)CrossRefPubMedGoogle Scholar
  27. 27.
    Wang, R., Wang, Y., Zhang, X., Chen, L.: Inferring transcriptional regulatory networks from high-throughput data. Bioinformatics 23(22), 3056–3064 (2007)CrossRefPubMedGoogle Scholar
  28. 28.
    Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18), 3594–3603 (2004)CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang, X., Moret, B.M.E.: Boosting the performance of inference algorithms for transcriptional regulatory networks using a phylogenetic approach. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS, vol. 5251, pp. 245–258. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xiuwei Zhang
    • 1
  • Bernard M. E. Moret
    • 1
  1. 1.Laboratory for Computational Biology and Bioinformatics, EPFL (Ecole Polytechnique Fédérale de Lausanne), Lausanne, Switzerland, and Swiss Institute of BioinformaticsSwitzerland

Personalised recommendations