Fast Prediction of RNA-RNA Interaction

  • Raheleh Salari
  • Rolf Backofen
  • S. Cenk Sahinalp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5724)

Abstract

Regulatory antisense RNAs are a class of ncRNAs that regulate gene expression by prohibiting the translation of an mRNA by establishing stable interactions with a target sequence. There is great demand for efficient computational methods to predict the specific interaction between an ncRNA and its target mRNA(s). There are a number of algorithms in the literature which can predict a variety of such interactions - unfortunately at a very high computational cost. Although some existing target prediction approaches are much faster, they are specialized for interactions with a single binding site.

In this paper we present a novel algorithm to accurately predict the minimum free energy structure of RNA-RNA interaction under the most general type of interactions studied in the literature. Moreover, we introduce a fast heuristic method to predict the specific (multiple) binding sites of two interacting RNAs. We verify the performance of our algorithms for joint structure and binding site prediction on a set of known interacting RNA pairs. Experimental results show our algorithms are highly accurate and outperform all competitive approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alkan, C., Karakoc, E., Nadeau, J.H., Sahinalp, S.C., Zhang, K.: RNA-RNA interaction prediction and antisense RNA target search. Journal of Computational Biology 13(2), 267–282 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    Andronescu, M., Zhang, Z.C., Condon, A.: Secondary structure prediction of interacting RNA molecules. J. Mol. Biol. 345, 987–1001 (2005)CrossRefPubMedGoogle Scholar
  3. 3.
    Bernhart, S.H., Tafer, H., Mückstein, U., Flamm, C., Stadler, P.F., Hofacker, I.L.: Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol. Biol. 1, 3 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Busch, A., Richter, A.S., Backofen, R.: IntaRNA: Efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics, page btn544 (2008)Google Scholar
  5. 5.
    Chitsaz, H., Salari, R., Sahinalp, S.C., Backofen, R.: A partition function algorithm for two interacting nucleic acid strands. Bioinformatics 25(12) (2009)Google Scholar
  6. 6.
    Dimitrov, R.A., Zuker, M.: Prediction of hybridization and melting for double-stranded nucleic acids. Biophysical Journal 87, 215–226 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hackermller, J., Meisner, N.C., Auer, M., Jaritz, M., Stadler, P.F.: The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model. Gene 345, 3–12 (2005)CrossRefGoogle Scholar
  8. 8.
    Kato, Y., Akutsu, T., Seki, H.: A grammatical approach to rna-rna interaction prediction. Pattern Recogn. 42(4), 531–538 (2009)CrossRefGoogle Scholar
  9. 9.
    Markham, N.R., Zuker, M.: UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008)CrossRefPubMedGoogle Scholar
  10. 10.
    McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)CrossRefPubMedGoogle Scholar
  11. 11.
    Meisner, N.C., Hackermller, J., Uhl, V., Aszdi, A., Jaritz, M., Auer, M.: mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure. Chembiochem. 5, 1432–1447 (2004)CrossRefPubMedGoogle Scholar
  12. 12.
    Mückstein, U., Tafer, H., Hackermüller, J., Bernhart, S.H., Hernandez-Rosales, M., Vogel, J., Stadler, P.F., Hofacker, I.L.: Translational control by RNA-RNA interaction: Improved computation of RNA-RNA binding thermodynamics. Bioinformatics Research and Development 13, 114–127 (2008)Google Scholar
  13. 13.
    Mückstein, U., Tafer, H., Hackermüller, J., Bernhart, S.H., Stadler, P.F., Hofacker, I.L.: Thermodynamics of RNA-RNA binding. Bioinformatics 22, 1177–1182 (2006)CrossRefPubMedGoogle Scholar
  14. 14.
    Pervouchine, D.D.: IRIS: intermolecular RNA interaction search. Genome Inform. 15, 92–101 (2004)PubMedGoogle Scholar
  15. 15.
    Rehmsmeier, M., Steffen, P., Hochsmann, M., Giegerich, R.: Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wagner, E.G., Flrdh, K.: Antisense RNAs everywhere? Trends Genet. 18, 223–226 (2002)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Raheleh Salari
    • 1
  • Rolf Backofen
    • 2
  • S. Cenk Sahinalp
    • 1
  1. 1.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  2. 2.Bioinformatics GroupAlbert-Ludwigs-UniversityFreiburgGermany

Personalised recommendations