Decoding Synteny Blocks and Large-Scale Duplications in Mammalian and Plant Genomes

  • Qian Peng
  • Max A. Alekseyev
  • Glenn Tesler
  • Pavel A. Pevzner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5724)


The existing synteny block reconstruction algorithms use anchors (e.g., orthologous genes) shared over all genomes to construct the synteny blocks for multiple genomes. This approach, while efficient for a few genomes, cannot be scaled to address the need to construct synteny blocks in many mammalian genomes that are currently being sequenced. The problem is that the number of anchors shared among all genomes quickly decreases with the increase in the number of genomes. Another problem is that many genomes (plant genomes in particular) had extensive duplications, which makes decoding of genomic architecture and rearrangement analysis in plants difficult. The existing synteny block generation algorithms in plants do not address the issue of generating non-overlapping synteny blocks suitable for analyzing rearrangements and evolution history of duplications. We present a new algorithm based on the A-Bruijn graph framework that overcomes these difficulties and provides a unified approach to synteny block reconstruction for multiple genomes, and for genomes with large duplications.

Supplementary material:


Gene Pair Plant Genome Segmental Duplication Syntenic Region Genomic Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vision, T.J., Brown, D.G., Tanksley, S.D.: The Origins of Genomic Duplications in Arabidopsis. Science 290(5499), 2114–2117 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    Lander, E., Linton, L., Birren, B., Nusbaum, C., et al.: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)CrossRefPubMedGoogle Scholar
  3. 3.
    Bailey, J., Baertsch, R., Kent, W., Haussler, D., Eichler, E.: Hotspots of mammalian chromosomal evolution. Genome Biol. 5(4), R23 (2004)Google Scholar
  4. 4.
    Blanc, G., Hokamp, K., Wolfe, K.H.: A recent polyploidy superimposed on older large-scale duplications in the arabidopsis genome. Genome Res. 13(2), 137–144 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bourque, G., Pevzner, P.A., Tesler, G.: Reconstructing the Genomic Architecture of Ancestral Mammals: Lessons From Human, Mouse, and Rat Genomes. Genome Res. 14(4), 507–516 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. PNAS 100(13), 7672–7677 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pevzner, P., Tesler, G.: Genome rearrangements in mammalian evolution: Lessons from human and mouse genomes. Genome Res. 13, 37–45 (2002)CrossRefGoogle Scholar
  8. 8.
    Peng, Q., Pevzner, P., Tesler, G.: The fragile breakage versus random breakage models of chromosome evolution. PLoS Comput. Biol. 2(2), e14 (2006)Google Scholar
  9. 9.
    Tesler, G.: Grimm: genome rearrangements web server. Bioinf. 18(3), 492–493 (2002)CrossRefGoogle Scholar
  10. 10.
    Nadeau, J., Taylor, B.: Lengths of chromosomal segments conserved since divergence of man and mouse. PNAS 81, 814–818 (1984)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Waterston, R., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J., Agarwal, P., Agarwala, R., Ainscough, R., Alexanderson, M., An, P., et al.: Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002)CrossRefPubMedGoogle Scholar
  12. 12.
    Kent, W.J., Baertsch, R., Hinrichs, A., Miller, W., Haussler, D.: Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. PNAS 100(20), 11484–11489 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Brudno, M., Malde, S., Poliakov, A., Do, C., Couronne, O., et al.: Glocal alignment: Finding rearrangements during alignment. Bioinf. 19, i54–i62 (2003)CrossRefGoogle Scholar
  14. 14.
    Darling, A., Mau, B., Blattner, F., Perna, N.T.: Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bourque, G., Yacef, Y., El-Mabrouk, N.: Maximizing synteny blocks to identify ancestral homologs. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 21–34. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16, 1557–1565 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sinha, A., Meller, J.: Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. BMC Bioinf. 8(1), 82 (2007)CrossRefGoogle Scholar
  18. 18.
    Hachiya, T., Osana, Y., Popendorf, K., Sakakibara, Y.: Accurate identification of orthologous segments among multiple genomes. Bioinf. 25(7), 853–860 (2009)CrossRefGoogle Scholar
  19. 19.
    Kellis, M., Birren, B.W., Lander, E.S.: Proof and evolutionary analysis of ancient genome duplication in the yeast saccharomyces cerevisiae. Nature 428(6983), 617–624 (2004)CrossRefPubMedGoogle Scholar
  20. 20.
    Bowers, J.E., Chapman, B.A., Rong, J., Paterson, A.H.: Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003)CrossRefPubMedGoogle Scholar
  21. 21.
    Hampson, S., McLysaght, A., Gaut, B., Baldi, P.: LineUp: Statistical Detection of Chromosomal Homology With Application to Plant Comparative Genomics. Genome Res. 13(5), 999–1010 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Haas, B.J., Delcher, A.L., Wortman, J.R., Salzberg, S.L.: DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinf. 20(18), 3643–3646 (2004)CrossRefGoogle Scholar
  23. 23.
    Vandepoele, K., Saeys, Y., Simillion, C., Raes, J., Van de Peer, Y.: The Automatic Detection of Homologous Regions (ADHoRe) and Its Application to Microcolinearity between Arabidopsis and Rice. Genome Res. 12(11), 1792–1801 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Simillion, C., Janssens, K., Sterck, L., Van de Peer, Y.: i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles. Bioinf. 24(1), 127–138 (2008)CrossRefGoogle Scholar
  25. 25.
    Soderlund, C., Nelson, W., Shoemaker, A., Paterson, A.: SyMAP: A system for discovering and viewing syntenic regions of FPC maps. Genome Res. 16(9), 1159–1168 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pevzner, P.A., Tang, H., Tesler, G.: De Novo Repeat Classification and Fragment Assembly. Genome Res. 14(9), 1786–1796 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Raphael, B., Zhi, D., Tang, H., Pevzner, P.: A novel method for multiple alignment of sequences with repeated and shuffled elements. Genome Res. 14(11), 2336–2346 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhi, D., Raphael, B., Price, A., Tang, H., Pevzner, P.: Identifying repeat domains in large genomes. Genome Biol. 7(1), R7 (2006)CrossRefGoogle Scholar
  29. 29.
    Bandeira, N., Clauser, K.R., Pevzner, P.A.: Shotgun Protein Sequencing: Assembly of Peptide Tandem Mass Spectra from Mixtures of Modified Proteins. Mol. Cell Proteomics 6(7), 1123–1134 (2007)CrossRefPubMedGoogle Scholar
  30. 30.
    Bourque, G., Zdobnov, E.M., Bork, P., Pevzner, P.A., Tesler, G.: Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. Genome Res. 15(1), 98–110 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dewey, C.N., Pachter, L.: Mercator: Multiple whole-genome-orthology map construction (2006),
  32. 32.
    Bao, Z., Eddy, S.R.: Automated De Novo Identification of Repeat Sequence Families in Sequenced Genomes. Genome Res. 12(8), 1269–1276 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jiang, Z., Tang, H., Ventura, M., Cardone, M.F., Marques-Bonet, T., She, X., Pevzner, P.A., Eichler, E.E.: Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nat. Genet. 11, 1361–1368 (2007)CrossRefGoogle Scholar
  34. 34.
    Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J ACM 46, 1–27 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Qian Peng
    • 1
  • Max A. Alekseyev
    • 3
  • Glenn Tesler
    • 2
  • Pavel A. Pevzner
    • 1
  1. 1.Department of Computer Science and EngineeringUSA
  2. 2.Department of MathematicsUniversity of CaliforniaSan DiegoUSA
  3. 3.Department of Computer Science and EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations