HAPLO-ASP: Haplotype Inference Using Answer Set Programming

  • Esra Erdem
  • Ozan Erdem
  • Ferhan Türe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5753)


Identifying maternal and paternal inheritance is essential to be able to find the set of genes responsible for a particular disease. However, due to technological limitations, we have access to genotype data (genetic makeup of an individual), and determining haplotypes (genetic makeup of the parents) experimentally is a costly and time consuming procedure. With these biological motivations, we study haplotype inference—determining the haplotypes that form a given set of genotypes—using Answer Set Programming; we call our approach Haplo-ASP. This note summarizes the range of problems that can be handled by Haplo-ASP, and its applicability and effectiveness on real data in comparison with the other existing approaches.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsimony: Complexity of exact and approximation algorithms. INFORMS Journal on Computing 16(4), 348–359 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brown, D., Harrower, I.: Integer programming approaches to haplotype inference by pure parsimony. IEEE/ACM Transactions on Bioinformatics and Computational Biology 3, 348–359 (2006)CrossRefGoogle Scholar
  4. 4.
    Wang, L., Xu, Y.: Haplotype inference by maximum parsimony. Bioinformatics 19(14), 1773–1780 (2003)CrossRefGoogle Scholar
  5. 5.
    Lynce, I., Marques-Silva, J.: Efficient haplotype inference with boolean satisfiability. In: AAAI (2006)Google Scholar
  6. 6.
    Graça, A., Marques-Silva, J.P., Lynce, I., Oliveira, A.: Efficient haplotype inference with pseudo-boolean optimization. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 125–139. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Yoo, Y.J., Tang, J., Kaslow, R.A., Zhang, K.: Haplotype inference for present absent genotype data using previously identified haplotypes and haplotype patterns. Bioinformatics 23(18), 2399–2406 (2007)CrossRefGoogle Scholar
  8. 8.
    Erdem, E., Ture, F.: Efficient haplotype inference with answer set programming. In: Proc. of AAAI (2008)Google Scholar
  9. 9.
    Neigenfind, J., Gyetvai, G., Basekow, R., Diehl, S., Achenbach, U., Gebhardt, C., Selbig, J., Kersten, B.: Haplotype inference from unphased snp data in heterozygous polyploids based on sat. BMC Genomics 9(1), 356 (2008)CrossRefGoogle Scholar
  10. 10.
    Hsu, K.C., Chida, S., Geraghty, D.E., Dupont, B.: The killer cell immunoglobulin-like receptor (kir) genomic region: gene-order, haplotypes and allelic polymorphism. Immunological Reviews 190(1), 40–52 (2002)CrossRefGoogle Scholar
  11. 11.
    Pajerowska-Mukhtar, K., Stich, B., Achenbach, U., Ballvora, A., Lübeck, J., Strahwald, J., Tacke, E., Hofferbert, H.R., Ilarionova, E., Bellin, D., Walkemeier, B., Basekow, R., Kersten, B., Gebhardt, C.: Single nucleotide polymorphisms in the allene oxide synthase 2 gene are associated with field resistance to late blight in populations of tetraploid potato cultivars. Genetics 181, 1115–1127 (2009)CrossRefGoogle Scholar
  12. 12.
    Hudson, R.: Generating samples under a wrightfisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Esra Erdem
    • 1
  • Ozan Erdem
    • 1
  • Ferhan Türe
    • 2
  1. 1.Faculty of Engineering and Natural SciencesSabancı UniversityIstanbulTurkey
  2. 2.Department of Computer ScienceUniversity of MarylandUSA

Personalised recommendations