Contextual Argumentation in Ambient Intelligence

  • Antonis Bikakis
  • Grigoris Antoniou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5753)

Abstract

The imperfect nature of context in Ambient Intelligence environments and the special characteristics of the entities that possess and share the available context information render contextual reasoning a very challenging task. Most current Ambient Intelligence systems have not successfully addressed these challenges, as they rely on simplifying assumptions, such as perfect knowledge of context, centralized context, and unbounded computational and communicating capabilities. This paper presents a knowledge representation model based on the Multi-Context Systems paradigm, which represents ambient agents as autonomous logic-based entities that exchange context information through mappings, and uses preference information to express their confidence in the imported knowledge. On top of this model, we have developed an argumentation framework that exploits context and preference information to resolve conflicts caused by the interaction of ambient agents through mappings, and a distributed algorithm for query evaluation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Henricksen, K., Indulska, J.: Modelling and Using Imperfect Context Information. In: Proceedings of PERCOMW 2004, Washington, DC, USA, pp. 33–37. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  2. 2.
    Bikakis, A., Patkos, T., Antoniou, G., Plexousakis, D.: A Survey of Semantics-based Approaches for Context Reasoning in Ambient Intelligence. In: Constructing Ambient Intelligence. Communications in Computer and Information Science, pp. 14–23. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Bikakis, A., Antoniou, G., Hassapis, P.: Alternative Strategies for Conflict Resolution in Multi-Context Systems. In: Proceedings of the 5th IFIP Conference on Artificial Intelligence Applications and Innovations (AIAI 2009). Springer, Heidelberg (2009)Google Scholar
  4. 4.
    McCarthy, J.: Generality in Artificial Intelligence. Communications of the ACM 30(12), 1030–1035 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Buvac, S., Mason, I.A.: Propositional Logic of Context. In: AAAI, pp. 412–419 (1993)Google Scholar
  6. 6.
    Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do without modal logics. Artificial Intelligence 65(1) (1994)Google Scholar
  7. 7.
    Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reasoning=locality+compatibility. Artificial Intelligence 127(2), 221–259 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Serafini, L., Bouquet, P.: Comparing formal theories of context in AI. Artificial Intelligence 155(1-2), 41–67 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Roelofsen, F., Serafini, L.: Minimal and Absent Information in Contexts. In: IJCAI, pp. 558–563 (2005)Google Scholar
  10. 10.
    Brewka, G., Roelofsen, F., Serafini, L.: Contextual Default Reasoning. In: IJCAI, pp. 268–273 (2007)Google Scholar
  11. 11.
    Sabater, J., Sierra, C., Parsons, S., Jennings, N.R.: Engineering Executable Agents using Multi-context Systems. Journal of Logic and Computation 12(3), 413–442 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Inconsistency tolerance in P2P data integration: An epistemic logic approach. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 90–105. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Chatalic, P., Nguyen, G.H., Rousset, M.C.: Reasoning with Inconsistencies in Propositional Peer-to-Peer Inference Systems. In: ECAI, pp. 352–356 (2006)Google Scholar
  14. 14.
    Binas, A., Sheila, A.: Peer-to-Peer Query Answering with Inconsistent Knowledge. In: KR, pp. 329–339 (2008)Google Scholar
  15. 15.
    Simari, G.R., Loui, R.P.: A Mathematical Treatment of Defeasible Reasoning and its Implementation. Artificial Intelligence 53(2-3), 125–157 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Stolzenburg, F., García, A.J., Chesñevar, C.I., Simari, G.R.: Computing Generalized Specificity. Journal of Applied Non-Classical Logics 13(1), 87–113 (2003)CrossRefMATHGoogle Scholar
  17. 17.
    Prakken, H., Sartor, G.: Argument-Based Extended Logic Programming with Defeasible Priorities. Journal of Applied Non-Classical Logics 7(1) (1997)Google Scholar
  18. 18.
    Governatori, G., Maher, M.J., Billington, D., Antoniou, G.: Argumentation Semantics for Defeasible Logics. Journal of Logic and Computation 14(5), 675–702 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Bench-Capon, T.: Persuasion in Practical Argument Using Value-based Argumentation Frameworks. Journal of Logic and Computation 13, 429–448 (2003)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kaci, S., van der Torre, L.: Preference-based argumentation: Arguments supporting multiple values. Internation Journal of Approximate Reasoning 48(3), 730–751 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Amgoud, L., Parsons, S., Perrussel, L.: An Argumentation Framework based on contextual Preferences. In: International Conference on Formal and Applied and Practical Reasoning (FAPR 2000), pp. 59–67 (2000)Google Scholar
  22. 22.
    Amgoud, L., Cayrol, C.: A Reasoning Model Based on the Production of Acceptable Arguments. Annals of Mathematic and Artificial Intelligence 34(1-3), 197–215 (2002)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Antonis Bikakis
    • 1
  • Grigoris Antoniou
    • 1
  1. 1.Institute of Computer ScienceFO.R.T.H., Vassilika VoutwnHeraklionGreece

Personalised recommendations