cc⊤ on Stage: Generalised Uniform Equivalence Testing for Verifying Student Assignment Solutions

  • Johannes Oetsch
  • Martina Seidl
  • Hans Tompits
  • Stefan Woltran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5753)

Abstract

The tool cc⊤ is an implementation for testing various parameterised notions of program correspondence between logic programs under the answer-set semantics, based on reductions to quantified propositional logic. One such notion is relativised uniform equivalence with projection, which extends standard uniform equivalence via two additional parameters: one for specifying the input alphabet and one for specifying the output alphabet. In particular, the latter parameter is used for projecting answer sets to the set of designated output atoms, i.e. ignoring auxiliary atoms during answer-set comparison. In this paper, we discuss an application of cc⊤ for verifying the correctness of students’ solutions drawn from a laboratory course on logic programming, employing relativised uniform equivalence with projection as the underlying program correspondence notion. We complement our investigation by discussing a performance evaluation of cc⊤, showing that discriminating among different back-end solvers for quantified propositional logic is a crucial issue towards optimal performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oetsch, J., Seidl, M., Tompits, H., Woltran, S.: ccT: A Tool for Checking Advanced Correspondence Problems in Answer-Set Programming. In: Proc. CIC 2006, pp. 3–10. IEEE, Los Alamitos (2006)Google Scholar
  2. 2.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly Equivalent Logic Programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Eiter, T., Fink, M.: Uniform Equivalence of Logic Programs under the Stable Model Semantics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Eiter, T., Tompits, H., Woltran, S.: On Solution Correspondences in Answer Set Programming. In: Proc. IJCAI 2005, pp. 97–102 (2005)Google Scholar
  5. 5.
    Woltran, S.: Characterizations for Relativized Notions of Equivalence in Answer Set Programming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 161–173. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Oetsch, J., Tompits, H., Woltran, S.: Facts do not Cease to Exist Because They Are Ignored: Relativised Uniform Equivalence with Answer-Set Projection. In: Proc. AAAI 2007, pp. 458–464. AAAI Press, Menlo Park (2007)Google Scholar
  7. 7.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The Diagnosis Frontend of the DLV System. AI Communications 12(1-2), 99–111 (1999)MathSciNetGoogle Scholar
  8. 8.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing 9, 365–385 (1991)CrossRefMATHGoogle Scholar
  9. 9.
    Tompits, H., Woltran, S.: Towards Implementations for Advanced Equivalence Checking in Answer-Set Programming. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 189–203. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Besnard, P., Schaub, T., Tompits, H., Woltran, S.: Representing Paraconsistent Reasoning via Quantified Propositional Logic. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 84–118. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for Quantified Boolean Logic Satisfiability. Artificial Intelligence 145, 99–120 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Biere, A.: Resolve and Expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Egly, U., Seidl, M., Woltran, S.: A Solver for QBFs in Negation Normal Form. Constraints 14(1), 38–79 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Reiter, R.: A Theory of Diagnosis from First Principles. Artificial Intelligence 32(1), 57–95 (1987)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Oikarinen, E., Janhunen, T.: Verifying the Equivalence of Logic Programs in the Disjunctive Case. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 180–193. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Chen, Y., Lin, F., Li, L.: SELP - A System for Studying Strong Equivalence Between Logic Programs. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 442–446. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Eiter, T., Faber, W., Traxler, P.: Testing Strong Equivalence of Datalog Programs - Implementation and Examples. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 437–441. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Johannes Oetsch
    • 1
  • Martina Seidl
    • 2
  • Hans Tompits
    • 1
  • Stefan Woltran
    • 1
  1. 1.Institut für InformationssystemeTechnische Universität WienViennaAustria
  2. 2.Institut für SoftwaretechnikTechnische Universität WienViennaAustria

Personalised recommendations