Max-ASP: Maximum Satisfiability of Answer Set Programs

  • Emilia Oikarinen
  • Matti Järvisalo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5753)


This paper studies answer set programming (ASP) in the generalized context of soft constraints and optimization criteria. In analogy to the well-known Max-SAT problem of maximum satisfiability of propositional formulas, we introduce the problems of unweighted and weighted Max-ASP. Given a normal logic program P, in Max-ASP the goal is to find so called optimal Max-ASP models, which minimize the total cost of unsatisfied rules in P and are at the same time answer sets for the set of satisfied rules in P. Inference rules for Max-ASP are developed, resulting in a complete branch-and-bound algorithm for finding optimal models for weighted Max-ASP instances. Differences between the Max-ASP problem and earlier proposed related concepts in the context of ASP are also discussed. Furthermore, translations between Max-ASP and Max-SAT are studied.


Transformation Rule Stable Model Soft Constraint Truth Assignment Loop Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debugging answer-set programs. In: Proc. AAAI 2008, pp. 448–453. AAAI Press, Menlo Park (2008)Google Scholar
  2. 2.
    Li, C., Manyá, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability. IOS Press, Amsterdam (2009)Google Scholar
  3. 3.
    Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artificial Intelligence 172(2-3), 204–233 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonet, M., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelligence 171(8-9), 606–618 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE Transactions on Knowledge and Data Engineering 12(5), 845–860 (2000)CrossRefGoogle Scholar
  7. 7.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brewka, G., Niemelä, I., Truszczynski, M.: Answer set optimization. In: Proc. IJCAI 2003, pp. 867–872. Morgan Kaufmann, San Francisco (2003)Google Scholar
  9. 9.
    Gebser, M., Gharib, M., Mercer, R., Schaub, T.: Monotonic answer set programming. Journal of Logic and Computation (in press, 2009), doi:10.1093/logcom/exn040Google Scholar
  10. 10.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. ICLP/SLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  11. 11.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  12. 12.
    Clark, K.: Negation as failure. In: Readings in nonmonotonic reasoning, pp. 311–325. Morgan Kaufmann, San Francisco (1987)Google Scholar
  13. 13.
    Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of Methods of Logic in Computer Science 1, 51–60 (1994)Google Scholar
  14. 14.
    Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Emilia Oikarinen
    • 1
  • Matti Järvisalo
    • 1
  1. 1.Department of Information and Computer ScienceHelsinki University of Technology TKKTKKFinland

Personalised recommendations