A Deductive System for FO(ID) Based on Least Fixpoint Logic

  • Ping Hou
  • Marc Denecker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5753)

Abstract

The logic FO(ID) uses ideas from the field of logic programming to extend first order logic with non-monotone inductive definitions. The goal of this paper is to extend Gentzen’s sequent calculus to obtain a deductive inference method for FO(ID). The main difficulty in building such a proof system is the representation and inference of unfounded sets. It turns out that we can represent unfounded sets by least fixpoint expressions borrowed from stratified least fixpoint logic (SLFP), which is a logic with a least fixpoint operator and characterizes the expressibility of stratified logic programs. Therefore, in this paper, we integrate least fixpoint expressions into FO(ID) and define the logic FO(ID,SLFP). We investigate a sequent calculus for FO(ID,SLFP), which extends the sequent calculus for SLFP with inference rules for the inductive definitions of FO(ID). We show that this proof system is sound with respect to a slightly restricted fragment of FO(ID) and complete for a more restricted fragment of FO(ID).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baral, C., Brewka, G., Schlipf, J. (eds.): LPNMR 2007. LNCS (LNAI), vol. 4483. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Brachman, R.J., Levesque, H.J.: Competence in knowledge representation. In: National Conference on Artificial Intelligence (AAAI 1982), pp. 189–192 (1982)Google Scholar
  3. 3.
    Brotherston, J.: Sequent Calculus Proof System for Inductive Definitions. PhD thesis, University of Edinburgh (2006)Google Scholar
  4. 4.
    Buss, S.R.: Handbook of Proof Theory. Elsevier, Amsterdam (1998)MATHGoogle Scholar
  5. 5.
    Compton, K.J.: Stratified least fixpoint logic. Theoretical Computer Science 131(1), 95–120 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Denecker, M.: The well-founded semantics is the principle of inductive definition. In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI), vol. 1489, pp. 1–16. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Denecker, M., Bruynooghe, M., Marek, V.: Logic programming revisited: Logic programs as inductive definitions. ACM Transactions on Computational Logic (TOCL) 2(4), 623–654 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Denecker, M., Ternovska, E.: Inductive Situation Calculus. In: Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR 2004), pp. 545–553 (2004)Google Scholar
  9. 9.
    Denecker, M., Ternovska, E.: A logic of non-monotone inductive definitions. ACM Transactions On Computational Logic (TOCL) 9(2) (March 2008)Google Scholar
  10. 10.
    Denecker, M., Vennekens, J.: Well-founded semantics and the algebraic theory of non-monotone inductive definitions. In: Baral et al [1], pp. 84–96Google Scholar
  11. 11.
    Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Gentzen, G.: Untersuchungen über das logische schließen. Mathematische Zeitschrift 39, 176–210, 405–431 (1935)Google Scholar
  13. 13.
    Hagiya, M., Sakurai, T.: Foundation of Logic Programming Based on Inductive Definition. New Generation Computing 2, 59–77 (1984)CrossRefMATHGoogle Scholar
  14. 14.
    Hou, P., Wittocx, J., Denecker, M.: A deductive system for PC(ID). In: Baral et al [1], pp. 162–174Google Scholar
  15. 15.
    Mariën, M., Gilis, D., Denecker, M.: On the relation between ID-Logic and Answer Set Programming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 108–120. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Mariën, M., Wittocx, J., Denecker, M., Bruynooghe, M.: SAT(ID): Satisfiability of propositional logic extended with inductive definitions. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 211–224. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Martin-Löf, P.: Hauptsatz for the intuitionistic theory of iterated inductive definitions. In: Fenstad, J.e. (ed.) Second Scandinavian Logic Symposium, pp. 179–216 (1971)Google Scholar
  18. 18.
    Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. North-Holland Publishing Co., Amsterdam (1969)MATHGoogle Scholar
  19. 19.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)MathSciNetMATHGoogle Scholar
  20. 20.
    Vennekens, J., Denecker, M.: FO(ID) as an extension of DL with rules. In: The 6th Annual European Semantic Web Conference (accepted, 2009)Google Scholar
  21. 21.
    Zhang, L., Malik, S.: Validating sat solvers using an independent resolution-based checker: Practical implementations and other applications. In: 2003 Design, Automation and Test in Europe Conference and Exposition (DATE 2003), Munich, Germany, March 3-7, pp. 10880–10885. IEEE Computer Society, Los Alamitos (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ping Hou
    • 1
  • Marc Denecker
    • 1
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenBelgium

Personalised recommendations