Complexity of the Stable Model Semantics for Queries on Incomplete Databases

  • Jos de Bruijn
  • Stijn Heymans
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5753)


We study the complexity of consistency checking and query answering on incomplete databases for languages ranging from non-recursive Datalog to disjunctive Datalog with negation under the stable model semantics. We consider both possible and certain answers and both closed- and open-world interpretation of C-databases with and without conditions. By reduction to stable models of logic programs we find that, under closed-world interpretation, adding negation to (disjunctive) Datalog does not increase the complexity of the considered problems for C-databases, but certain answers for databases without conditions are easier for Datalog without than with negation. Under open-world interpretation, adding negation to non-recursive Datalog already leads to undecidability, but the complexity of certain answers for negation-free queries is the same as under closed-world interpretation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views. In: Proc. PODS, pp. 254–263 (1998)Google Scholar
  2. 2.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)MATHGoogle Scholar
  3. 3.
    Abiteboul, S., Kanellakis, P.C., Grahne, G.: On the representation and querying of sets of possible worlds. Theoretical Computer Science 78(1), 158–187 (1991)MathSciNetMATHGoogle Scholar
  4. 4.
    Bertossi, L.E., Bravo, L.: Consistent query answers in virtual data integration systems. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 42–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Codd, E.F.: Extending the database relational model to capture more meaning. ACM ToDS 4(4), 397–434 (1979)CrossRefGoogle Scholar
  6. 6.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Computing Surveys 33(3), 374–425 (2001)CrossRefGoogle Scholar
  7. 7.
    Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM ToDS 22(3), 364–418 (1997)CrossRefGoogle Scholar
  8. 8.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3-4), 365–386 (1991)CrossRefMATHGoogle Scholar
  10. 10.
    Gelfond, M., Przymusinska, H.: Reasoning on open domains. In: Proc. LPNMR, pp. 397–413 (1993)Google Scholar
  11. 11.
    Grahne, G.: Horn tables - an efficient tool for handling incomplete information in databases. In: Proc. PODS, pp. 75–82 (1989)Google Scholar
  12. 12.
    Halevy, A.Y.: Answering queries using views: A survey. VLDB J. 10(4), 270–294 (2001)CrossRefMATHGoogle Scholar
  13. 13.
    Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Open answer set programming with guarded programs. ACM ToCL 9(4) (2008)Google Scholar
  14. 14.
    Imieliński, T., Lipski, W.: Incomplete information in relational databases. Journal of the ACM 31(4), 761–791 (1984)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Imieliński, T., Naqvi, S.A., Vadaparty, K.V.: Incomplete objects - a data model for design and planning applications. In: Proc. SIGMOD, pp. 288–297 (1991)Google Scholar
  16. 16.
    Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246 (2002)Google Scholar
  17. 17.
    Libkin, L.: Data exchange and incomplete information. In: Proc. PODS, pp. 60–69 (2006)Google Scholar
  18. 18.
    Reiter, R.: A sound and sometimes complete query evaluation algorithm for relational databases with null values. Journal of the ACM 33(2), 349–370 (1986)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rosati, R.: On the decidability and finite controllability of query processing in databases with incomplete information. In: Proc. PODS, pp. 356–365 (2006)Google Scholar
  20. 20.
    Schlipf, J.: Some Remarks on Computability and Open Domain Semantics. In: Proc. WS on Structural Complexity and Recursion-Theoretic Methods in Logic Programming (1993)Google Scholar
  21. 21.
    Schlipf, J.: Complexity and Undecidability Results for Logic Programming. Annals of Mathematics and Artificial Intelligence 15(3-4), 257–288 (1995)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Trakhtenbrot, B.: Impossibility of an algorithm for the decision problem for finite models. Dokl. Akad. Nauk SSSR 70, 569–572 (1950)MATHGoogle Scholar
  23. 23.
    Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: ACM Symposium on Theory of Computing, pp. 137–146 (1982)Google Scholar
  24. 24.
    Vardi, M.Y.: On the integrity of databases with incomplete information. In: Proc. PODS, pp. 252–266 (1986)Google Scholar
  25. 25.
    Vardi, M.Y.: Querying logical databases. Journal of Computer and System Sciences 33(2), 142–160 (1986)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Vorobyov, S.G., Voronkov, A.: Complexity of nonrecursive logic programs with complex values. In: PODS, pp. 244–253 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jos de Bruijn
    • 1
  • Stijn Heymans
    • 2
  1. 1.KRDB Research CenterFree University of Bozen-BolzanoItaly
  2. 2.Institute of Information SystemsVienna University of TechnologyAustria

Personalised recommendations