Runtime Verification Using a Temporal Description Logic

  • Franz Baader
  • Andreas Bauer
  • Marcel Lippmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5749)

Abstract

Formulae of linear temporal logic (LTL) can be used to specify (wanted or unwanted) properties of a dynamical system. In model checking, the system’s behavior is described by a transition system, and one needs to check whether all possible traces of this transition system satisfy the formula. In runtime verification, one observes the actual system behavior, which at any time point yields a finite prefix of a trace. The task is then to check whether all continuations of this prefix to a trace satisfy (violate) the formula.

In this paper, we extend the known approaches to LTL runtime verification in two directions. First, instead of propositional LTL we use \(\mathcal{ALC}\)-LTL, which can use axioms of the description logic \(\mathcal{ALC}\) instead of propositional variables to describe properties of single states of the system. Second, instead of assuming that the observed system behavior provides us with complete information about the states of the system, we consider the case where states may be described in an incomplete way by \(\mathcal{ALC}\)-ABoxes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Ann. of Mathematics and Artificial Intelligence 30, 171–210 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Artale, A., Franconi, E.: Temporal description logics. In: Gabbay, D., Fisher, M., Vila, L. (eds.) Handbook of Time and Temporal Reasoning in Artificial Intelligence. The MIT Press, Cambridge (2001)Google Scholar
  3. 3.
    Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. In: Brewka, G., Lang, J. (eds.) Proc. of the 11th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2008), pp. 684–694. Morgan Kaufmann, Los Altos (2008)Google Scholar
  4. 4.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge (2008)MATHGoogle Scholar
  5. 5.
    Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. Journal of Logic and Computation (2009)Google Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Colin, S., Mariani, L.: Run-time verification. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Proceedings of the Fifteenth IFIP WG6.1 International Symposium on Protocol Specification, Testing and Verification XV, London, UK, pp. 3–18. Chapman & Hall, Ltd., Boca Raton (1996)CrossRefGoogle Scholar
  10. 10.
    Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey. In: Demri, S., Jensen, C.S. (eds.) Proc. of the 15th Int. Symp. on Temporal Representation and Reasoning (TIME 2008), pp. 3–14. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  11. 11.
    Pnueli, A.: The temporal logic of programs. In: Proc. of the 18th Annual Symp. on the Foundations of Computer Science (FOCS 1977), pp. 46–57 (1977)Google Scholar
  12. 12.
    Roşu, G.: On safety properties and their monitoring. Technical Report UIUCDCS-R-2007-2850, Department of Computer Science, University of Illinois at Urbana-Champaign (2007)Google Scholar
  13. 13.
    Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Automated Software Engineering 12(2), 151–197 (2005)CrossRefGoogle Scholar
  14. 14.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115(1), 1–37 (1994)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Wolper, P., Vardi, M.Y., Prasad Sistla, A.: Reasoning about infinite computation paths. In: Proc. of the 24th Annual Symp. on the Foundations of Computer Science (FOCS 1983), pp. 185–194. IEEE Computer Society Press, Los Alamitos (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Franz Baader
    • 1
  • Andreas Bauer
    • 2
  • Marcel Lippmann
    • 1
  1. 1.TU DresdenGermany
  2. 2.The Australian National UniversityAustralia

Personalised recommendations