Advertisement

Combining Theories with Shared Set Operations

  • Thomas Wies
  • Ruzica Piskac
  • Viktor Kuncak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5749)

Abstract

Motivated by applications in software verification, we explore automated reasoning about the non-disjoint combination of theories of infinitely many finite structures, where the theories share set variables and set operations. We prove a combination theorem and apply it to show the decidability of the satisfiability problem for a class of formulas obtained by applying propositional connectives to formulas belonging to: 1) Boolean Algebra with Presburger Arithmetic (with quantifiers over sets and integers), 2) weak monadic second-order logic over trees (with monadic second-order quantifiers), 3) two-variable logic with counting quantifiers (ranging over elements), 4) the Bernays-Schönfinkel-Ramsey class of first-order logic with equality (with ∃ * ∀ * quantifier prefix), and 5) the quantifier-free logic of multisets with cardinality constraints.

Keywords

Decision Procedure Cardinality Constraint Tree Automaton Star Type Linear Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Springer (Kluwer), Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstraction refinement for software model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 158. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-oriented programs with invariants. Journal of Object Technology 3(6), 27–56 (2004)CrossRefGoogle Scholar
  4. 4.
    Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Basin, D., Friedrich, S.: Combining WS1S and HOL. In: FroCoS (1998)Google Scholar
  6. 6.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    Boyer, R.S., Moore, J.S.: Integrating decision procedures into heuristic theorem provers: A case study of linear arithmetic. In: Machine Intelligence, vol. 11. Oxford University Press, Oxford (1988)Google Scholar
  8. 8.
    de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Feferman, S., Vaught, R.L.: The first order properties of products of algebraic systems. Fundamenta Mathematicae 47, 57–103 (1959)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fontaine, P.: Combinations of theories and the bernays-schönfinkel-ramsey class. In: VERIFY (2007)Google Scholar
  11. 11.
    Fontaine, P.: Combinations of theories for decidable fragments of first-order logic. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 263–278. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning. Morgan-Kaufmann, San Francisco (1992)Google Scholar
  13. 13.
    Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 167–182. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. Journal of Automated Reasoning 33(3-4), 221–249 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ginsburg, S., Spanier, E.: Semigroups, Pressburger formulas and languages. Pacific Journal of Mathematics 16(2), 285–296 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Klaedtke, F., Rueß, H.: Parikh automata and monadic second-order logics with linear cardinality constraints. Technical Report 177, Institute of Computer Science at Freiburg University (2002)Google Scholar
  17. 17.
    Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Klarlund, N., Møller, A.: MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1, Department of Computer Science. University of Aarhus (January 2001)Google Scholar
  19. 19.
    Krstic, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo parametric theories. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 602–617. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with Presburger Arithmetic. J. of Automated Reasoning (2006)Google Scholar
  21. 21.
    Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for Boolean Algebra with Presburger Arithmetic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 215–230. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Lahiri, S.K., Seshia, S.A.: The UCLID decision procedure. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 475–478. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study combining HOL-Light and CVC Lite. In: PDPAR. ENTCS, vol. 144(2) (2006)Google Scholar
  24. 24.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM TOPLAS 1(2), 245–257 (1979)CrossRefzbMATHGoogle Scholar
  25. 25.
    Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) 11th CADE, June 1992. LNCS (LNAI), vol. 607, pp. 748–752 (1992)Google Scholar
  26. 26.
    Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality constraints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 218–232. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Piskac, R., Kuncak, V.: Linear arithmetic with stars. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 268–280. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quantifiers. Journal of Logic, Language and Information 14(3), 369–395 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. s2-30, 264–286 (1930), doi:10.1112/plms/s2-30.1.264MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Mathematical Systems Theory 2(1), 57–81 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Th. Comp. Sc. 290(1), 291–353 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Tinelli, C., Zarba, C.: Combining nonstably infinite theories. Journal of Automated Reasoning 34(3) (2005)Google Scholar
  34. 34.
    Wies, T.: Symbolic Shape Analysis. PhD thesis. University of Freiburg (2009)Google Scholar
  35. 35.
    Wies, T., Piskac, R., Kuncak, V.: On Combining Theories with Shared Set Operations. Technical Report LARA-REPORT-2009-002, EPFL (May 2009)Google Scholar
  36. 36.
    Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data structures. In: ACM Conf. Programming Language Design and Implementation, PLDI (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Wies
    • 1
  • Ruzica Piskac
    • 1
  • Viktor Kuncak
    • 1
  1. 1.EPFL School of Computer and Communication SciencesSwitzerland

Personalised recommendations