Termination Modulo Combinations of Equational Theories

  • Francisco Durán
  • Salvador Lucas
  • José Meseguer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5749)


Rewriting with rules R modulo axioms E is a widely used technique in both rule-based programming languages and in automated deduction. Termination methods for rewriting systems modulo specific axioms E (e.g., associativity-commutativity) are known. However, much less seems to be known about termination methods that can be modular in the set E of axioms. In fact, current termination tools and proof methods cannot be applied to commonly occurring combinations of axioms that fall outside their scope. This work proposes a modular termination proof method based on semantics- and termination-preserving transformations that can reduce the proof of termination of rules R modulo E to an equivalent proof of termination of the transformed rules modulo a typically much simpler set B of axioms. Our method is based on the notion of variants of a term recently proposed by Comon and Delaune. We illustrate its practical usefulness by considering the very common case in which E is an arbitrary combination of associativity, commutativity, left- and right-identity axioms for various function symbols.


Variant Property Function Symbol Equational Theory Critical Pair Theory Transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Schulz, K.U.: Unification Theory. In: Automated Deduction. Applied Logic Series, vol. I, 8, pp. 225–263. Kluwer, Dordrecht (1998)Google Scholar
  2. 2.
    Bachmair, L., Dershowitz, N.: Completion for rewriting modulo a congruence. Theor. Comput. Sci. 67(2,3), 173–201 (1989)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cherifa, A.B., Lescanne, P.: Termination of rewriting systems by polynomial interpretations and its implementation. Sci. Comput. Program. 9(2), 137–159 (1987)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)MATHGoogle Scholar
  5. 5.
    Comon, H., Delaune, S.: The Finite Variant Property: How to Get Rid of Some Algebraic Properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Durán, F., Lucas, S., Meseguer, J.: MTT: The Maude Termination Tool (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 313–319. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Durán, F., Lucas, S., Meseguer, J.: Termination Modulo Combinations of Equational Theories (Long Version). University of Illinois Tech. Rep. (June 2009), http://hdl.handle.net/2142/12311
  8. 8.
    Durán, F., Lucas, S., Meseguer, J., Marché, C., Urbain, X.: Proving operational termination of membership equational programs. Higher-Order and Symbolic Computation 21(1-2), 59–88 (2008)CrossRefMATHGoogle Scholar
  9. 9.
    Escobar, S., Meseguer, J., Sasse, R.: Effectively Checking the Finite Variant Property. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 79–93. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Escobar, S., Meseguer, J., Sasse, R.: Variant Narrowing and Equational Unification. In: Proc. of WRLA 2008. ENTCS (2008) (to appear, 2009)Google Scholar
  11. 11.
    Escobar, S., Meseguer, J., Sasse, R.: Variant Narrowing and Extreme Termination. University of Illinois Tech. Rep. UIUCDCS-R-2009-3049 (March 2009)Google Scholar
  12. 12.
    Ferreira, M.C.F.: Dummy elimination in equational rewriting. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Giesl, J., Kapur, D.: Dependency Pairs for Equational Rewriting. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 93–108. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termination Proofs in the Dependency Pair Framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Goguen, J., Meseguer, J.: Order-sorted algebra I: Equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105, 217–273 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems. Journal of the ACM 27, 797–821 (1980)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jouannaud, J.-P., Kirchner, H.: Completion of a Set of Rules Modulo a Set of Equations. SIAM Journal of Computing 15(4), 1155–1194 (1986)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Jouannaud, J.-P., Marché, C.: Termination and completion modulo associativity, commutativity and identity. Theor. Comput. Sci. 104(1), 29–51 (1992)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kirchner, C., Kirchner, H., Meseguer, J.: Operational Semantics of OBJ3. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 287–301. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  20. 20.
    Lucas, S., Meseguer, J.: Operational Termination of Membership Equational Programs: the Order-Sorted Way. In: Proc. of WRLA 2008. ENTCS (2008) (to appear, 2009)Google Scholar
  21. 21.
    Marché, C.: Normalised rewriting and normalised completion. In: Proc. LICS 1994, pp. 394–403. IEEE, Los Alamitos (1994)Google Scholar
  22. 22.
    Marché, C., Urbain, X.: Termination of associative-commutative rewriting by dependency pairs. In: Nipkow, T. (ed.) RTA 1998, vol. 1379, pp. 241–255. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Nipkow, T.: Combining Matching Algorithms: The Regular Case. Journal of Symbolic Computation 12, 633–653 (1991)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  25. 25.
    Ohsaki, H., Middeldorp, A., Giesl, J.: Equational termination by semantic labelling. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 457–471. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Peterson, G.E., Stickel, M.E.: Complete Sets of Reductions for Some Equational Theories. Journal of the ACM 28(2), 233–264 (1981)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Ringeissen, C.: Combination of matching algorithms. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 187–198. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  28. 28.
    Rubio, A., Nieuwenhuis, R.: A total AC-compatible ordering based on RPO. Theor. Comput. Sci. 142(2), 209–227 (1995)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Viry, P.: Equational rules for rewriting logic. Theor. Comp. Sci. 285, 487–517 (2002)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Francisco Durán
    • 1
  • Salvador Lucas
    • 2
  • José Meseguer
    • 3
  1. 1.LCCUniversidad de MálagaSpain
  2. 2.DSICUniversidad Politécnica de ValenciaSpain
  3. 3.CS Dept.University of Illinois at Urbana-ChampaignUSA

Personalised recommendations