Objective vs. Subjective Evaluation of Speakers with and without Complete Dentures

  • Tino Haderlein
  • Tobias Bocklet
  • Andreas Maier
  • Elmar Nöth
  • Christian Knipfer
  • Florian Stelzle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5729)

Abstract

For dento-oral rehabilitation of edentulous (toothless) patients, speech intelligibility is an important criterion. 28 persons read a standardized text once with and once without wearing complete dentures. Six experienced raters evaluated the intelligibility subjectively on a 5-point scale and the voice on the 4-point Roughness-Breathiness-Hoarseness (RBH) scales. Objective evaluation was performed by Support Vector Regression (SVR) on the word accuracy (WA) and word recognition rate (WR) of a speech recognition system, and a set of 95 word based prosodic features. The word accuracy combined with selected prosodic features showed a correlation of up to r = 0.65 to the subjective ratings for patients with dentures and r = 0.72 for patients without dentures. For the RBH scales, however, the average correlation of the feature subsets to the subjective ratings for both types of recordings was r < 0.4.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Runte, C., Tawana, D., Dirksen, D., Runte, B., Lamprecht-Dinnesen, A., Bollmann, F., Seifert, E., Danesh, G.: Spectral analysis of /s/ sound with changing angulation of the maxillary central incisors. Int J Prosthodont 15, 254–258 (2002)Google Scholar
  2. 2.
    Molly, L., Nackaerts, O., Vandewiele, K., Manders, E., van Steenberghe, D., Jacobs, R.: Speech adaptation after treatment of full edentulism through immediate-loaded implant protocols. Clin Oral Implants Res 19, 86–90 (2008)Google Scholar
  3. 3.
    Stojcević, I., Carek, A., Buković, D., Hedjever, M.: Influence of the partial denture on the articulation of dental and postalveolar sounds. Coll Antropol 28, 799–807 (2004)Google Scholar
  4. 4.
    Nawka, T., Anders, L.-C., Wendler, J.: Die auditive Beurteilung heiserer Stimmen nach dem RBH-System. Sprache - Stimme - Gehör 18, 130–133 (1994)Google Scholar
  5. 5.
    Stemmer, G.: Modeling Variability in Speech Recognition. Studien zur Mustererkennung, vol. 19. Logos Verlag, Berlin (2005)Google Scholar
  6. 6.
    Wahlster, W. (ed.): Verbmobil: Foundations of Speech-to-Speech Translation. Springer, Berlin (2000)Google Scholar
  7. 7.
    Haderlein, T.: Automatic Evaluation of Tracheoesophageal Substitute Voices. Studien zur Mustererkennung, vol. 25. Logos Verlag, Berlin (2007)Google Scholar
  8. 8.
    Maier, A.: Speech of Children with Cleft Lip and Palate: Automatic Assessment. Studien zur Mustererkennung, vol. 29. Logos Verlag, Berlin (2009)Google Scholar
  9. 9.
    Nöth, E., Batliner, A., Kießling, A., Kompe, R., Niemann, H.: Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System. IEEE Trans. on Speech and Audio Processing 8, 519–532 (2000)CrossRefGoogle Scholar
  10. 10.
    Chen, K., Hasegawa-Johnson, M., Cohen, A., Borys, S., Kim, S.S., Cole, J., Choi, J.Y.: Prosody dependent speech recognition on radio news corpus of American English. IEEE Trans. Audio, Speech, and Language Processing 14, 232–245 (2006)CrossRefGoogle Scholar
  11. 11.
    Shriberg, E., Stolcke, A.: Direct Modeling of Prosody: An Overview of Applications in Automatic Speech Processing. In: Proc. International Conference on Speech Prosody, Nara, Japan, pp. 575–582 (2004)Google Scholar
  12. 12.
    Batliner, A., Buckow, A., Niemann, H., Nöth, E., Warnke, V.: The Prosody Module. In: [6], pp. 106–121.Google Scholar
  13. 13.
    Smola, A., Schölkopf, B.: A Tutorial on Support Vector Regression. Statistics and Computing 14, 199–222 (2004)CrossRefGoogle Scholar
  14. 14.
    Witten, I., Frank, E., Trigg, L., Hall, M., Holmes, G., Cunningham, S.: Weka: Practical machine learning tools and techniques with java implementations. In: Proc. ICONIP/ANZIIS/ANNES 1999 Future Directions for Intelligent Systems and Information Sciences, pp. 192–196. Morgan Kaufmann, San Francisco (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tino Haderlein
    • 1
    • 2
  • Tobias Bocklet
    • 1
  • Andreas Maier
    • 1
    • 2
  • Elmar Nöth
    • 1
  • Christian Knipfer
    • 3
  • Florian Stelzle
    • 3
  1. 1.Lehrstuhl für Mustererkennung (Informatik 5)Universität Erlangen-NürnbergErlangenGermany
  2. 2.Abteilung für Phoniatrie und PädaudiologieUniversität Erlangen-NürnbergErlangenGermany
  3. 3.Mund-, Kiefer- und Gesichtschirurgische KlinikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations