Accepting Networks of Non-inserting Evolutionary Processors

  • Jürgen Dassow
  • Victor Mitrana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5750)


In this paper we consider four variants of accepting networks of evolutionary processors with in-place computations, that is the length of every word in every node at any step in the computation is bounded by the length of the input word. These devices are called here accepting networks of non-inserting evolutionary processors (ANNIEP shortly). The variants differ in two respects: filters that are used to control the exchange of information, i.e., we use random context conditions and regular languages as filters, and the way of accepting the input word, i.e., at least one output node or all output nodes are nonempty at some moment in the computation. The computational power of these devices is investigated. In the case of filters defined by regular languages, both variants lead to the class of context-sensitive languages. If random context conditions are used for defining filters, all linear context-free languages and some non-semilinear (even over the one-letter alphabet) can be accepted with both variants. Moreover, some closure properties of the classes of languages ANNIEPs with random context filters are also given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Dassow, J., Rogozhin, Y., Truthe, B.: Personal communicationGoogle Scholar
  2. 2.
    Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.: Networks of evolutionary processors. Acta Informatica 38, 517–529 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Csuhaj-Varj, E., Salomaa, A.: Networks of parallel language processors. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 299–318. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Csuhaj-Varj, E., Mitrana, V.: Evolutionary systems: a language generating device inspired by evolving communities of cells. Acta Informatica 36, 913–926 (2000)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Csuhaj-Varjú, E., Martín-Vide, C., Mitrana, V.: Hybrid NEPs are computationally complete. Acta Informatica 41, 257–272 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dassow, J., Truthe, B.: On the power of networks of evolutionary processors. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 158–169. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing. In: Artificial Intelligence and Information-Control Systems of Robots, vol. 94, pp. 31–40. World Scientific, Singapore (1994)Google Scholar
  8. 8.
    Fahlman, S., Hinton, G., Seijnowski, T.: Massively parallel architectures for AI: NETL, THISTLE and Boltzmann Machines. In: Proc. AAAI National Conf. on AI, pp. 109–113. William Kaufman, Los Altos (1983)Google Scholar
  9. 9.
    Hillis, W.: The Connection Machine. MIT Press, Cambridge (1985)Google Scholar
  10. 10.
    Manea, F., Martín-Vide, C., Mitrana, V.: On the size complexity of universal accepting hybrid networks of evolutionary processors. Mathematical Structures in Computer Science 17, 753–771 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Manea, F., Mitrana, V.: All NP-problems can be solved in polynomial time by accepting hybrid networks of evolutionary processors of constant size. Information Processing Letters 103, 112–118 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Manea, F., Margenstern, M., Mitrana, V., Perez-Jimenez, M.: A new characterization of NP, P, and PSPACE with accepting hybrid networks of evolutionary processors (submitted)Google Scholar
  13. 13.
    Margenstern, M., Mitrana, V., Perez-Jimenez, M.: Accepting hybrid networks of evolutionary systems. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Martín-Vide, C., Mitrana, V.: Networks of evolutionary processors: results and perspectives. In: Molecular Computational Models: Unconventional Approaches, pp. 78–114. Idea Group Publishing, Hershey (2005)CrossRefGoogle Scholar
  15. 15.
    Păun, G., Sntean, L.: Parallel communicating grammar systems: the regular case. Annals of University of Bucharest, Ser. Matematica-Informatica 38, 55–63 (1989)MathSciNetGoogle Scholar
  16. 16.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61, 108–143 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sankoff, D., et al.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 89, pp. 6575–6579 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jürgen Dassow
    • 1
  • Victor Mitrana
    • 2
    • 3
  1. 1.Faculty of Computer ScienceUniversity of MagdeburgMagdeburgGermany
  2. 2.Faculty of MathematicsUniversity of BucharestBucharestRomania
  3. 3.Department of Information Systems and ComputationTechnical University of ValenciaValenciaSpain

Personalised recommendations