A Projective Brane Calculus with Activate, Bud and Mate as Primitive Actions

  • Maria Pamela C. David
  • Johnrob Y. Bantang
  • Eduardo R. Mendoza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5750)


We modify and extend Cardelli’s Brane Calculus and Danos and Pradalier’s Projective Brane Calculus (PBC) to improve consistency with biological characteristics of membrane reactions. We propose a Projective Activate-Bud-Mate (PABM) calculus as an alternative to the Phago-Exo-Pino (PEP) basic calculus of L. Cardelli. PABM uses a generalized formalism for Action activation with receptor-ligand type channel construction that incorporates multiple association and affinity similar to Priami’s beta binders. Calculus elements are finite. Volumes are associated with systems for more realistic compartment-based reaction probabilities. PABM also uses Brane domains that partition membranes into controllable, independent groupings of projective actions. Domains eliminate the need for parameters in Phago and Bud and allow lateral and cross-membrane interactions. We show that PABM can emulate bitonal membrane reactions. PABM also realizes the idea of L. Cardelli (Cardeli, 2004) on modeling molecules as systems.


Schwann Cell Membrane Reaction Parallel Composition Reduction Rule Multiple Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Păun, G.: Introduction to membrane computing. In: Applications of Membrane Computing, pp. 1–42 (2006)Google Scholar
  2. 2.
    Regev, A., Shapiro, E.: The π-calculus as an abstraction for biomolecular systems. In: Modelling in Molecular Biology (2004)Google Scholar
  3. 3.
    Cardelli, L.: Brane calculi: interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Danos, V., Pradalier, S.: Projective brane calculus. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Guerriero, M.L., Priami, C., Romanel, A.: Modeling Static Biological Compartments with Beta-binders. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 247–261. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 184–199. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Busi, N., Zandron, C.: Modelling and analysis of biological processes by (mem)brane calculi and systems. In: Proceedings of the 2006 Winter Simulation Conference, pp. 1646–1655 (2006)Google Scholar
  9. 9.
    Guglielmo, G.D., Drake, P., Baass, P., Authier, F., Posner, B., Bergeron, J.: Insulin receptor internalization and signalling. Mol. Cell. Biochem. 182, 59–63 (1998)CrossRefGoogle Scholar
  10. 10.
    Hsu, S., Bonvin, A.: Atomic insight into the CD4 binding-induced conformational changes in HIV-1 gp120. Proteins: structure, function and bioinformatics 3, 582–593 (2004)CrossRefGoogle Scholar
  11. 11.
    Keskin, O.: Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies. BMC Structural Biology 7, 31 (2007)CrossRefGoogle Scholar
  12. 12.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.: Molecular Biology of the Cell, New York (2002)Google Scholar
  13. 13.
    David, M., Asprer, J., Ibana, J., Concepcion, G., Padlan, E.: A study of the structural correlates of affinity maturation: antibody affinity as a function of chemical interactions, structural plasticity and stability. Mol. Immunol. 44, 1342–1351 (2006)CrossRefGoogle Scholar
  14. 14.
    Dimitrov, D.: Virus entry: molecular mechanisms and biomedical applications. Nature Reviews Microbiology 2, 109–122 (2004)CrossRefGoogle Scholar
  15. 15.
    Kim, W., Hudson, B., Moser, B., Guo, J., Rong, L., Yu, L., Qu, W., Lalla, E., Lerner, S., Chen, Y., Yan, S.D., D’Agati, V., Naka, Y., Ramasamy, R., Herold, K., Yan, S., Schmidt, A.: Receptor for advanced glycation end products and its ligands: A journey from the complications of diabetes to its pathogenesis. Annals of the New York Academy of Sciences 1043, 553–561 (2006)CrossRefGoogle Scholar
  16. 16.
    Thulke, S., Radonic, A., Nitsche, A., Siegert, W.: Quantitative expression analysis of HHV-6 cell receptor CD46 on cells of human cord blood, peripheral blood and G-CSF mobilised leukapheresis cells. Virology Journal 3, 77–81 (2006)CrossRefGoogle Scholar
  17. 17.
    Simons, K., Vaz, W.L.C.: Model Systems, Lipid Rafts, and Cell Membranes. Annual Review of Biophysics and Biomolecular Structure 33(1) (June 2004)Google Scholar
  18. 18.
    Sutton, R.B., Fasshauer, D., Jahn, R., Brunger, A.T.: Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395(6700), 347–353 (1998)CrossRefGoogle Scholar
  19. 19.
    Chiu, D., Wilson, C., Karlsson, A., Danielsson, A., Lunqvist, A., Stroemberg, A., Ryttsen, F., Davidson, M., Nordholm, S., Orwar, O., Zare, R.: Manipulating the biochemical nanoenvironment around single molecules contained within vesicles. Chem. Phys. 247, 133–139 (1999)CrossRefGoogle Scholar
  20. 20.
    Jahn, R., Grubmüller, H.: Membrane fusion. Current Opinion in Cell Biology 14, 488–495 (2002)CrossRefGoogle Scholar
  21. 21.
    Phillips, A., Cardelli, L.: A Correct Abstract Machine for the Stochastic Pi-calculus. In: Concurrent Models in Molecular Biology (2004)Google Scholar
  22. 22.
    Poland, G.A., Tosh, P., Jacobson, R.M.: Requiring influenza vaccination for health care workers: seven truths we must accept. Vaccine 23(17-18), 2251–2255 (2005); Vaccines and Immunisation. Based on the Fourth World Congress on Vaccines and ImmunisationCrossRefGoogle Scholar
  23. 23.
    Baccam, P., Beauchemin, C., Macken, C.A., Hayden, F.G., Perelson, A.S.: Kinetics of Influenza A Virus Infection in Humans. J. Virol. 80(15), 7590–7599 (2006)CrossRefGoogle Scholar
  24. 24.
    Sidorenko, Y., Reichl, U.: Structured model of influenza virus replication in mdck cells. Biotechnology and bioengineering 88, 1–14 (2004)CrossRefGoogle Scholar
  25. 25.
    Bardiya, N., Bae, J.: Influenza vaccines: recent advances in production technologies. Applied Microbiology and Biotechnology 67(3), 299–305 (2005)CrossRefGoogle Scholar
  26. 26.
    Genzel, Y., Schulze-Horsel, J., Möhler, L., Sidorenko, Y., Reichl, U.: Influenza vaccines –challenges in mammalian cell culture technology. Cell Technology for Cell Products, 503–508 (2007)Google Scholar
  27. 27.
    Nayak, D.P., Hui, E.K.-W., Barman, S.: Assembly and budding of influenza virus. Virus Research 106, 147–165 (2004)CrossRefGoogle Scholar
  28. 28.
    de Ronde, J.J., Ndjehan, C.P.: Modelling Networks and Pathways in Systems Biology. Technical report, CA545 Practicum, School of Computing, Dublin City University (2005/2006)Google Scholar
  29. 29.
    David, M.P.C.: BCD: Design and implementation of a stochastic brane machine. Master’s thesis, Department of Computer Science, University of the Philippines, Diliman, Quezon City (2008)Google Scholar
  30. 30.
    Segata, N., Blanzieri, E., Priami, C.: Stochastic π-calculus modelling of multisite phosphorylation based signaling: in silico analysis of the Pho4 transcription factor and the PHO pathway in Saccharomyces cerevisiae. Technical report, Center for Computational and Systems Biology, The Microsoft Research – University of Trento (2007)Google Scholar
  31. 31.
    Yap, J.M.: A Pi-Calculus Model of the CD95 Receptor Medicated Pathway of Apoptosis. Philippine Information Techonology Journal 1(1) (2008)Google Scholar
  32. 32.
    Zhang, B.T., Hikawa, N., Horie, H., Takenaka, T.: Mitogen induced proliferation of isolated adult mouse Schwann cells. J. Neurosci. Res., 648–654 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Maria Pamela C. David
    • 1
  • Johnrob Y. Bantang
    • 1
    • 2
    • 3
  • Eduardo R. Mendoza
    • 1
    • 4
  1. 1.Faculty of Physics and Center for NanoscienceLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Max-Planck-Institut für Dynamik komplexer technischer SystemeMagdeburgGermany
  3. 3.National Institute of Physics, College of ScienceUniversity of the Philippines, DilimanQuezon CityPhilippines
  4. 4.Department of Computer ScienceUniversity of the Philippines, DilimanQuezon CityPhilippines

Personalised recommendations