Advertisement

Extended Stochastic Petri Nets for Model-Based Design of Wetlab Experiments

  • Monika Heiner
  • Sebastian Lehrack
  • David Gilbert
  • Wolfgang Marwan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5750)

Abstract

This paper introduces extended stochastic Petri nets to model wetlab experiments. The extentions include read and inhibitor arcs, stochastic transitions with freestyle rate functions as well as several deterministically timed transition types: immediate firing, deterministic firing delay, and scheduled firing. The extensions result into non-Markovian behaviour, which precludes analytical analysis approaches. But there are adapted stochastic simulation analysis (SSA) methods, ready to deal with the extended behaviour. Having the simulation traces, we apply simulative model checking of PLTL, a linear-time temporal logic (LTL) in a probabilistic setting.

We present some typical model components, demonstrating the suitability of the introduced Petri net class for the envisaged application scenario. We conclude by looking briefly at a classical example of prokaryotic gene regulation, the lac operon case.

Keywords

System Biology Markup Language Reachability Graph Stochastic Simulation Algorithm Stochastic Transition Simulation Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ASSB96]
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying Continuous-time Markov Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. [BGHO08]
    Breitling, R., Gilbert, D., Heiner, M., Orton, R.: A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Briefings in Bioinformatics 9(5), 404–421 (2008)CrossRefGoogle Scholar
  3. [BK02]
    Bause, F., Kritzinger, P.S.: Stochastic Petri Nets. Vieweg (2002)Google Scholar
  4. [CGP01]
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (2001) (third printing)CrossRefGoogle Scholar
  5. [Cha08]
    Charlie Website. A Tool for the Analysis of Place/Transition Nets. BTU Cottbus (2008), http://www-dssz.informatik.tu-cottbus.de/software/charlie/charlie.html
  6. [DG08]
    Donaldson, R., Gilbert, D.: A model checking approach to the parameter estimation of biochemical pathways. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 269–287. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. [GBHD09]
    Gilbert, D., Breitling, R., Heiner, M., Donaldson, R.: An introduction to biomodel engineering, illustrated for signal transduction pathways. In: Corne, D.W., Frisco, P., Paun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 13–28. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. [Ger01]
    German, R.: Performance analysis of communication systems with non-Markovian stochastic Petri nets. John Wiley and Sons Ltd., Chichester (2001)Google Scholar
  9. [GHL07]
    Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. [GHR+08]
    Gilbert, D., Heiner, M., Rosser, S., Fulton, R., Gu, X., Trybiło, M.: A Case Study in Model-driven Synthetic Biology. In: Proc. 2nd IFIP Conference on Biologically Inspired Collaborative Computing (BICC), IFIP WCC 2008, Milano, pp. 163–175 (2008)Google Scholar
  11. [Gil77]
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  12. [Haa03]
    Haas, P.J.: Stochastic Petri nets: Modelling, Stability, Simulation. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  13. [HDG10]
    Heiner, M., Donaldson, R., Gilbert, D.: Petri Nets for Systems Biology. In: Iyengar, M.S. (ed.) Symbolic Systems Biology: Theory and Methods. Jones and Bartlett Publishers, Inc., USA (in Press, 2010)Google Scholar
  14. [HFS+03]
    Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., et al.: The Systems Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models. J. Bioinformatics 19, 524–531 (2003)CrossRefGoogle Scholar
  15. [HGD08]
    Heiner, M., Gilbert, D., Donaldson, R.: Petri nets in systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. [HJ94]
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)CrossRefzbMATHGoogle Scholar
  17. [HLMP04]
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 307–329. Springer, Heidelberg (2004)Google Scholar
  18. [HRS08]
    Heiner, M., Richter, R., Schwarick, M.: Snoopy - a tool to design and animate/simulate graph-based formalisms. In: Proc. PNTAP 2008, associated to SIMUTools 2008. ACM digital library (2008)Google Scholar
  19. [Leh07]
    Lehrack, S.: A tool to model and simulate stochastic Petri nets in the setting of biochemical networks (in German). Master thesis, BTU Cottbus, Dep. of CS (2007)Google Scholar
  20. [MBC+95]
    Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets, 2nd edn. Wiley Series in Parallel Computing. John Wiley and Sons, Chichester (1995)zbMATHGoogle Scholar
  21. [MC208]
    MC2 Website. MC2 - PLTL model checker. University of Glasgow (2008), http://www.brc.dcs.gla.ac.uk/software/mc2/
  22. [Mur89]
    Murata, T.: Petri Nets: Properties, Analysis and Applications. Proc.of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  23. [Pnu81]
    Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci. 13, 45–60 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [PW03]
    Priese, L., Wimmel, H.: Theoretical Informatics - Petri Nets (in German). Springer, Heidelberg (2003)zbMATHGoogle Scholar
  25. [Rei82]
    Reisig, W.: Petri nets; An introduction. Springer, Heidelberg (1982)zbMATHGoogle Scholar
  26. [Sno08]
    Snoopy Website. A Tool to Design and Animate/Simulate Graphs. BTU Cottbus (2008), http://www-dssz.informatik.tu-cottbus.de/software/snoopy.html
  27. [SR99]
    Starke, P.H., Roch, S.: INA - The Intergrated Net Analyzer. Humboldt University Berlin (1999), http://www.informatik.hu-berlin.de/~starke/ina.html
  28. [Wil06]
    Wilkinson, D.J.: Stochastic Modelling for System Biology, 1st edn. CRC Press, New York (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Monika Heiner
    • 1
  • Sebastian Lehrack
    • 1
  • David Gilbert
    • 2
  • Wolfgang Marwan
    • 3
  1. 1.Department of Computer ScienceBrandenburg University of TechnologyCottbusGermany
  2. 2.School of Information Systems, Computing and MathematicsBrunel University, UxbridgeMiddlesexUK
  3. 3.Otto von Guericke University & Magdeburg Centre for Systems Biology c/o Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany

Personalised recommendations