Bio-PEPA with Events

  • Federica Ciocchetta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5750)


In this work we present an extension of Bio-PEPA, a language recently defined for the modelling and analysis of biochemical systems, to handle events. Events are constructs that represent changes in the system due to some trigger conditions. The events considered here are simple, but nevertheless able to describe most of the discontinuous changes in models and experiments.

Events are added to our language without any modification to the rest of the syntax in order to keep the specification of the model as straightforward as possible. Some maps are defined from Bio-PEPA with events to analysis tools. Specifically, we map our language to Hybrid Automata (HA) and we consider a modification of Gillespie’s algorithm for stochastic simulation. In order to test our approach, we present the translation in Bio-PEPA of a biochemical network describing the functional properties of the Acetylcholine receptor with the addition of an event that causes the inactivation of some reactions at a given time.


Hybrid System Stochastic Simulation Functional Rate Jump Condition Simultaneous Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappa, G., Rubin, H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular Specification of Hybrid Systems in CHARON. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, p. 6. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Bockmayr, A., Courtois, A.: Using hybrid concurrent constraint programming to model dynamic biological systems. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, p. 85. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bortolussi, L., Policriti, A.: Hybrid Approximation of Stochastic Concurrent Constraint Programming. Constraints 13(1-2), 66–90 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bortolussi, L., Policriti, A.: Hybrid Systems and Biology. Continuous and Discrete Modeling for Systems Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 424–448. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process algebra models of signalling pathways. In: Proc. of CMSB 2005, pp. 204–215 (2005)Google Scholar
  8. 8.
    Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. In: Proc. of FBTC 2007. ENTCS, vol. 194(3), pp. 103–117 (2008)Google Scholar
  10. 10.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. Theoretical Computer Science (to appear)Google Scholar
  11. 11.
    Ciocchetta, F.: Bio-PEPA with SBML-like Events. In: Proc. of the Workshop Computational Models for Cell Processes, TUCS general publication, vol. 47 (2008)Google Scholar
  12. 12.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. School of Informatics University of Edinburgh Technical Report, EDI-INF-RR-1231 (2008)Google Scholar
  13. 13.
    Cota, B.A., Sargent, R.B.: Simultaneous events and distributed simulation. In: Proc. of the Winter Simulation Conference (1990)Google Scholar
  14. 14.
    Dematté, L., Priami, C., Romanel, A.: The BlenX Language: a Tutorial. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 313–365. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Deshpande, A., Gollu, A., Semenzato, L.: SHIFT Programming Language and Run-Time System for Dynamic Networks of Hybrid Automata. PATH Report,
  16. 16.
    Edelstein, S.J., Schaad, O., Henry, E., Bertrand, D., Changgeux, J.P.: A kinetic mechanism for nicotin acetylcholine receptors based on multiple allosteric transitions. Biol. Cybern. 75, 361–379 (1996)CrossRefMATHGoogle Scholar
  17. 17.
    Galpin, V., Hillston, J., Bortolussi, L.: HYPE applied to the modelling of hybrid biological systems. ENTCS, vol. 218, pp. 33–51 (2008); Also in Proceedings of MFPS 2008Google Scholar
  18. 18.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81, 2340–2361 (1977)CrossRefGoogle Scholar
  19. 19.
    Henzinger, T.A.: The Theory of Hybrid Automata. In: The proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, LICS (1996)Google Scholar
  20. 20.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A Model Checker for Hybrid Systems. Software Tools for Technology Transfer 1, 110–122 (1997)CrossRefMATHGoogle Scholar
  21. 21.
    HybridSal home page,
  22. 22.
    Hucka, M., Finney, A., Hoops, S., Keating, S., Le Novére, N.: Systems Biology Markup Language (SBML) Level 2: Structures and Facilities for Model Definitions,
  23. 23.
    Lincoln, P., Tiwari, A.: Symbolic systems biology: Hybrid modeling and analysis of biological networks. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 660–672. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Le Novére, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka, M.: BioModels Database: a Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems. Nucleic Acids Research 34, D689–D691 (2006)CrossRefGoogle Scholar
  25. 25.
    Priami, C., Quaglia, P.: Beta-binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Dematté, L., Priami, C., Romanel, A.: The Beta Workbench: a computational tool to study the dynamics of biological systems. Briefings in Bioinformatics 9(5), 437–449 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Federica Ciocchetta
    • 1
  1. 1.Laboratory for Foundations of Computer ScienceThe University of EdinburghEdinburghScotland

Personalised recommendations