Inference and Validation of Networks

  • Ilias N. Flaounas
  • Marco Turchi
  • Tijl De Bie
  • Nello Cristianini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5781)

Abstract

We develop a statistical methodology to validate the result of network inference algorithms, based on principles of statistical testing and machine learning. The comparison of results with reference networks, by means of similarity measures and null models, allows us to measure the significance of results, as well as their predictive power. The use of Generalised Linear Models allows us to explain the results in terms of available ground truth which we expect to be partially relevant. We present these methods for the case of inferring a network of News Outlets based on their preference of stories to cover. We compare three simple network inference methods and show how our technique can be used to choose between them. All the methods presented here can be directly applied to other domains where network inference is used.

Keywords

Network inference Network validation News Outlets network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ilias N. Flaounas
    • 1
  • Marco Turchi
    • 2
  • Tijl De Bie
    • 2
  • Nello Cristianini
    • 1
    • 2
  1. 1.Department of Computer ScienceBristol UniversityBristolUnited Kingdom
  2. 2.Department of Engineering MathematicsBristol UniversityBristolUnited Kingdom

Personalised recommendations