Feature Weighting Using Margin and Radius Based Error Bound Optimization in SVMs

  • Huyen Do
  • Alexandros Kalousis
  • Melanie Hilario
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5781)


The Support Vector Machine error bound is a function of the margin and radius. Standard SVM algorithms maximize the margin within a given feature space, therefore the radius is fixed and thus ignored in the optimization.

We propose an extension of the standard SVM optimization in which we also account for the radius in order to produce an even tighter error bound than what we get by controlling only for the margin.

We use a second set of parameters, μ, that control the radius introducing like that an explicit feature weighting mechanism in the SVM algorithm. We impose an l 1 constraint on μ which results in a sparse vector, thus performing feature selection. Our original formulation is not convex, we give a convex approximation and show how to solve it. We experiment with real world datasets and report very good predictive performance compared to standard SVM.


Feature Weighting Support Vector Machine convex optimization 


  1. 1.
    Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, J., Vapnik, V.: Feature selection for svms. Advances in Neural Information Processing Systems 13, 668–674 (2000)Google Scholar
  2. 2.
    Rakotomamonjy, A.: Variable selection using svm-based criteria. Journal of Machine Learning Research 3, 1357–1370 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using suppor vector machine. Machine Learning 46, 389–422 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46(1-3), 131–159 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Duan, K., Keerthi, S.S., Poo, A.N.: Evaluation of simple performance measures for tuning svm hyperparameters. Neurocomputing 51, 41–59 (2002)CrossRefGoogle Scholar
  6. 6.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. Roal statistics 58, 276–288 (1996)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Efron, B., Hastie, T., Tibshirani, R.: Least angle regression. Annals of statistics (2003)Google Scholar
  8. 8.
    Zou, H.: The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning theory. Springer, Heidelberg (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  11. 11.
    Vapnik, V.: Statistical learning theory. Wiley Interscience, Hoboken (1998)zbMATHGoogle Scholar
  12. 12.
    Bach, F., Rakotomamonjy, A., Canu, S., Grandvalet, Y.: SimpleMKL. Journal of Machine Learning Research (2008)Google Scholar
  13. 13.
    Bonnans, J., Shapiro, A.: Optimization problems with perturbation: A guided tour. SIAM Review 40(2), 202–227 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kalousis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms: a study on high dimensional spaces. Knowledge and Information Systems 12(1), 95–116 (2007)CrossRefGoogle Scholar
  15. 15.
    Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Leo Liberti, N.M.: Global OPtimization - From Theory to Implementation. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  17. 17.
    Collobert, R., Weston, J., Bottou, L.: Trading convexity for scalability. In: Proceedings of the 23th Conference on Machine Learning (2006)Google Scholar
  18. 18.
    Stephen Boyd, L.V. (ed.): Convex optimization. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Huyen Do
    • 1
  • Alexandros Kalousis
    • 1
  • Melanie Hilario
    • 1
  1. 1.Computer Science DepartmentUniversity of GenevaCarougeSwitzerland

Personalised recommendations