Capacity Control for Partially Ordered Feature Sets

  • Ulrich Rückert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5782)


Partially ordered feature sets appear naturally in many classification settings with structured input instances, for example, when the data instances are graphs and a feature tests whether a specific substructure occurs in the instance. Since such features are partially ordered according to an “is substructure of” relation, the information in those datasets is stored in an intrinsically redundant form. We investigate how this redundancy affects the capacity control behavior of linear classification methods. From a theoretical perspective, it can be shown that the capacity of this hypothesis class does not decrease for worst case distributions. However, if the data generating distribution assigns lower probabilities to instances in the lower levels of the hierarchy induced by the partial order, the capacity of the hypothesis class can be bounded by a smaller term. For itemset, subsequence and subtree features in particular, the capacity is finite even when an infinite number of features is present. We validate these results empirically on three graph datasets and show that the limited capacity of linear classifiers on such data makes underfitting rather than overfitting the more prominent capacity control problem. To avoid underfitting, we propose using more general substructure classes with “elastic edges” and we demonstrate how such broad feature classes can be used with large datasets.


capacity control partially ordered features graph mining QSAR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ulrich Rückert
    • 1
  1. 1.International Computer Science InstituteBerkeley

Personalised recommendations